Getty Common Image Service

Research & Design Report

Stefano Cossu, J. Paul Getty Trust <scossu@getty.edu>

January-June 2019

mailto:scossu@getty.edu

Getty Common Image Service January-June 2019
Contents

1 Introduction 4

1.1 Scopeand PUrpose i i i i e e e e e e e e e e 4

1.2 ProjectDescription o o o e 4

1.3 PreexistingStatus. L e e 4

1.4 KeyRequirements i e e e e e e e e e 4

2 Architectural Components 5

2.1 ImageFormatsandEncoding 5

2.1.1 Pyramidal TIFF o e e e e e e e e 6

2.1.2 JPEG2000 o i e 6

2.2 IMageProCessors v v v i i e e e e e e e e e e e e e 7

2.2.1 JP2ProCessors o i it e e e e e e e e e e e e e e e e e e 7

2.2.2 Pyramidal TIFF Processors v v v i i vt e e et e e e e e e e e e e 8

2.3 ImMageServer e e e e e 9

2.3.1 SelectedforBenchmark 10

2.3.2 ReviewedButDiscarded e e 12

2.3.3 NotReviewed e e e e 15

2.3.4 Information SOUrces o i i e e e e 15

24 Gateway ServiCe . . . i i i e e e e e e e e e e e e e e 17

24.1 Image APIVersioning i i e e e e e e e e e e e e e 17

242 Caching o o o e e e e e e e e e 18

243 DerivativeCache e e 19

244 WebFrontEnd&LoadBalancing 20

2.5 ManifestService e e e e e 21

2.6 ETLAnd Migration i i i it e e e e e e e e e e e e 21

2.6.1 ETLFramework. e e e e e 22

2.6.2 MigrationScripts e e 22

2.7 Storage TechnologyandVendors i i it ittt 22

3 Benchmarks 22

3.1 ImageFormats&Encoding i i e e e e e e e e 23

3.1.1 TestSourcesandSetup e e e e 23

312 TestResults o o o i e e 23

Copyright 2019 J. Paul Getty Trust. Licensed under a "CC BY 4.0" license. 2

https://creativecommons.org/licenses/by/4.0/

Getty Common Image Service January-June 2019
3.2 IMageServers. e e e e e e 27
3.2.1 ReferenceDataSet e e 27

3.22 Load Test Servers . . . o v v i i e e e e e e e e e e e 28

3.2.3 BenchmarkParameters e 28

3.2.4 TestInstrumentsand Methodology 30

3.2.5 TestResultSummary i e e e e e 30

4 Conclusions 40
5 Appendix 1: Recipes 42
5.1 JP2encodingparameters e e e e e e e e e e e e 42

5.2 Sourcelmage Generation L e e 42

6 Appendix 2: Locust Test Data 43
6.1 IIPImage With PTIFF e e e e e e e e e e e 43
6.1.1 10C0oNNeCtionS v i i e 43

6.1.2 100Connections e e e e e e e e e e e 44

6.1.3 1000 CONNECtiONS . . . v v i i e e e e e e e e e e e e e e e e 44

6.2 IIPImageWithJP2 e e 45
6.2.1 10C0oNNeCtionNS it e e e e e e e e e e e e e e e e e e e 45

6.2.2 100CoNNnections e e e e e e e e 46

6.2.3 1000CONNECtiONS . . . v i i i e e e e e e e e e e e e e e 46

6.3 Cantaloupe o e e e e e e e e e e 47
6.3.1 10C0oNNeCtionS v i e e e e e e e e e e e e e e e e e 47

6.3.2 100CoNnections e e e e e e e e e 48

6.3.3 1000 CONNECtiONS . . . v i i i e e e e e e e e e e e e e e e 48

6.4 LOMiS . vt i e 49
6.4.1 10C0oNNeCtioNS it e e e e e e e e e e e e e e e e e e e 49

6.4.2 100CoNNections e e e e e e e e 50
Copyright 2019 J. Paul Getty Trust. Licensed under a "CC BY 4.0" license. 3

https://creativecommons.org/licenses/by/4.0/

Getty Common Image Service January-June 2019

1 Introduction

1.1 Scope and Purpose

This document summarizes the research and design process supporting the implementation of the Getty
Common Image Service (GCIS) as a whole and its individual components, and contains implementation
guidelines for the project derived from such research.

Given the very large volumes of data that GCIS is meant to process and its key role in the Getty information
architecture, a thorough study of the possible technical solutions for its various components was deemed
necessary; hence the need for this document.

The information contained here is focused on the research made by the Getty for its own specific goals, IT
infrastructure and resources, and is not intended to be a general solution to IlIF architectures. However, it
is the author’s and the Getty’s hope that several other institutions may benefit from the publication of this
information.

1.2 Project Description

The Getty Common Image Service (GCIS) is a suite of server software and data manipulation and manage-
ment tools designed by Getty Digital (GDI) with the scope of providing a central facility for serving the
Getty’s images on the Web.

GDI plans to take charge of serving millions of images from the various Getty programs using the IlIF
protocol, by consolidating existing image services. The choice of an image server, data transformation
pipelines and server infrastructure is critical to a successful implementation of this plan.

1.3 Preexisting Status

The Getty is currently adopting two separate llIF services, maintained by two separate departments: one
for the Museum collections, which have a Level 0 (static images + web server) setup, and one based on
Loris for the Getty Research Institute (GRI).

Performance of the current setup is a concern, as well as the maintainability of the Level 0 implementation.
The consolidation of the two systems into a larger one, maintained by GDI, should resolve both concerns.

1.4 Key Requirements

The planned system must fulfill the following key requirements:

Copyright 2019 J. Paul Getty Trust. Licensed under a "CC BY 4.0" license. 4

https://creativecommons.org/licenses/by/4.0/

Getty Common Image Service January-June 2019

1. Stability: The system as a whole must be able to support 24/7 operation under heavy load and
spikes without downtime, and must have a very low (i.e. close to zero) request failure rate under
normal operation conditions.

2. Sustainability: 3rd party software and code libraries used for in-house developed components
should be open source, have a stable contributor base and be in a "stable" phase at least; i.e. their
first "production-ready" release should have been released not too recently. This factor may be
corroborated by the existence of notable, large-scale production implementations.

3. Performance and Scale: The server must be capable of handling very large volumes of traffic
efficiently and continuously, use a reliable caching mechanism to reduce CPU cycles and network
I/O when delivering standard derivatives, and respond well to load balancing. It must also allow
software upgrades on individual systems without service downtime (i.e. all key systems must be
redundant).

4. Flexible storage: IIIF source images will be stored in an AWS S3 bucket or a compatible store using
the S3 API. The system must able to access these source images, possibly without any modification
to the image server source code. Ideally, the architecture should be able to handle changes to the
backend store protocol without major code changes.

5. Stable IIIF Image API support: Support for llIF Image 2.x API, level 2 * and Presentation v2.1. In
a not too far future, Image and Presentation 3.x API, as well as the other major API specs (Auth,
Search), should be supported. It is expected that the software continue supporting newer versions
of the API as these are published.

6. Maintain embedded metadata: One of the requirements for the images delivered by GDI is that they
have some embedded EXIF metadata. The system must ensure that relevant metadata embedded
in the original images are maintained in the final derivatives.

2 Architectural Components

This chapter will present the major decision areas for the GCIS architecture design. Tests and their results
for these areas are described in the next chapter.

2.1 Image Formats and Encoding

Most IIIF image servers need images formatted and encoded with specific parameters in order to work
efficiently. The choice of format and encoding scheme are key factors for performance and storage

https://iiif.io/api/image/2.1/compliance/

Copyright 2019 J. Paul Getty Trust. Licensed under a "CC BY 4.0" license. 5

https://iiif.io/api/image/2.1/compliance/
https://creativecommons.org/licenses/by/4.0/

Getty Common Image Service January-June 2019

efficiency.

Two image formats are viable with the majority of the image servers considered: pyramidal TIFF and
JPEG2000.

The encoding scheme defines how image data are stored in the image file. Data can be uncompressed, or
encoded with a lossless or a lossy compression scheme. Both TIFF and JPEG2000 support a number of
encodings; given the large amount of data that we foresee to store, a scheme that is both space-efficient
and CPU-efficient in the decoding phase is ideal. Encoding efficiency is not as critical as this is an operation
that is done only once per image, while decoding happens much more frequently and is demand-driven;
however, it plays a major role in large data migrations.

2.1.1 Pyramidal TIFF

Pyramidal TIFF (PTIFF) is part of the TIFF specification. It allows to embed multiple layers within an image,
each with a different resolution. This has the advantage of having pre-compiled low resolution versions of
the same image, so that if a thumbnail of the image is needed, only a smaller version of the image needs
to be loaded. Internal layers can be compressed with a variety of lossless or lossy algorithms.

Pyramidal TIFFs need to be ordered in tiles, rather than in stripes in order to work with IIIF servers.
Note that, of all the servers tested, only IIPImage supports PTIFF at a competitive level.

PTIFF supports a number of encoding schemes, including very efficient ones such as JPEG and WebP.
Many software libraries and applications (including [IPImage) use LibTIFF underneath, therefore can read
these formats?. This makes PTIFF a valid alternative to JP2.

2.1.2 JPEG 2000

JPEG 2000 (JP2) is a newer standard than TIFF and extends the JPEG specifications. Itis very space-efficient
and reportedly optimized for partial image retrieval, which makes it particularly amenable for IIIF uses.

JP2 images can be compressed with the JPEG2000 scheme or uncompressed. JPEG2000 compression has
been used in our benchmarks.

2Experiments with WebP-encoded PTIFF images and IIPImage have been conducted as part of this research and have proven
that IIPImage is able to handle such images. However, these experiments were not thorough and did not measure decod-
ing/encoding speed, image quality or file size scientifically.

Copyright 2019 J. Paul Getty Trust. Licensed under a "CC BY 4.0" license. 6

https://creativecommons.org/licenses/by/4.0/

Getty Common Image Service January-June 2019

2.2 Image Processors

There are open source and proprietary tools available to encode and decode JP2 and PTIFF images
efficiently. These are used in the ETL phase that consists of converting source files into formats viable for
the image server. Some of them are also used as decoders by some image servers.

The conversion from original sources to access masters includes several mandatory steps:

« Validate the image format, color model, depth, etc.

« Convert the source color profile to sRGB.

+ Copy selected metadata from the source to the destination.

+ Create progressively reduced resolutions as layers (pyramid), encoding each layer with the desired
algorithm; or, in the case of JP2, create the corresponding image structure necessary for multi-
resolution images.

+ Save thefile.

All of this needs to work within a Python framework.

2.2.1 JP2 Processors

The following tools were considered:

Kakadu
http://kakadusoftware.com/

Kakadu is the fastest JPEG2000 decoder today. A decoder is needed by most, if not all, image servers that
need to generate derivatives from a JPEG2000 source.

Some image servers use Kakadu (and require a Kakadu license to run), some others use OpenJPEG and
others yet let the implementer choose from either one.

Kakadu is commercial software and requires a license to be used on a public site. Evaluation licenses and
Public Service licenses are available.

OpenJPEG
https://www.openjpeg.org/

OpenJPEG is a free and open source alternative to Kakadu to encode JPEG2000 images. Until recently, it
was many times slower than Kakadu. However, recently a hefty effort was made to improve performance

Copyright 2019 J. Paul Getty Trust. Licensed under a "CC BY 4.0" license. 7

http://kakadusoftware.com/
http://kakadusoftware.com/licence/
http://kakadusoftware.com/licence/
https://www.openjpeg.org/
https://creativecommons.org/licenses/by/4.0/

Getty Common Image Service January-June 2019

significantly. While it is reportedly still slower than Kakadu, OpenJPEG may be an alternative in situations
where decoding performance may not be the only decision factor.

After some consideration, Kakadu was chosen without running any benchmark over OpenJPEG because
the Getty already owns a Kakadu license and because we were quite confident about Kakadu’s superior
speed from other implementers’ reports.

2.2.2 Pyramidal TIFF Processors

While the choice for processing JP2 images is quite straightforward, i.e. using Kakadu, generating PTIFFs
is more complex. In spite of being an established standard, finding a toolkit to perform all the operations
to create a pyramid file in an efficient and reliable way has proven to be one of the biggest challenges
of this project. Several options were available, but all were missing something or were not reliable, or
required an extensive setup; however, the additional effort to find an optimal production pipeline was
justified by the long-term gain in processing efficiency over time.

The following tools were considered:

Libvips / PyVips
https://libvips.github.io/libvips/ Libvips is a demand-driven, horizontally threaded image processing
library.

Vips has all the necessary functionality for the task, has Python bindings and runs very efficiently. However,
over long-running processes it has been observed to consume an increasingly large amount of memory
that does not get released, eventually leading to an application crash. The root cause for this is still being
investigated.

LibTIFF, OpenCV, LittleCMS

LibTIFF is the most popular TIFF manipulation library. Recent versions of LibTIFF v4 include support for
very efficient compression schemes such as JPEG and WebP.

The Python wrapper used here is tifffile which is a very minimal implementation which only support
simple operations such as reading and writing files, encoding and decoding, etc. Operations such as
resizing or color profile handling require additional tools.

This solution is a combination of several low-level libraries:

Copyright 2019 J. Paul Getty Trust. Licensed under a "CC BY 4.0" license. 8

https://libvips.github.io/libvips/
http://www.simplesystems.org/libtiff/
https://www.lfd.uci.edu/~gohlke/code/tifffile.py.html
https://creativecommons.org/licenses/by/4.0/

Getty Common Image Service January-June 2019

« libtiff to open the files, encode the derivative layers and save the pyramid layers.
+ OpenCV to resize the image layers.
« LittleCMS to convert color profiles.

This is a much more laborious solution which requires handling images as raw arrays of numbers, interfac-
ing with a C API (lcms) and building several libraries from source. It also runs as much as 10 times slower
than Vips.

On the other hand, this option allows for very fine-grained control of the image quality, such as the resizing
algorithm and compression schemes.

This method was devised as an alternative and comparison method to diagnose the above mentioned
memory issue with Vips.

Pillow

Pillow is the principal image manipulation library for Python. It is reasonably efficient (much less than
Vips though) and has a very extensive toolkit. The pyramid TIFF writing functionality is very obscure® but
available.

Pillow offers all the functionality needed for the task, except for one: encoding the image in tiles, which is
necessary for the access master format. This is a feature that is not yet implemented*, which makes Pillow
not viable for the task at the moment.

2.3 Image Server

The image server will not be developed in house and, ideally, should be a black box that GDI will only
need to configure.

With thisin mind, several IlIF Image APl implementations have been reviewed and three have been selected
for a performance conparison.

The following implementations, based on the Awesome IIIF list, have been reviewed:

+ Cantaloupe
+ Digilib
« Hymir

3https://githu b.com/python-pillow/Pillow/issues/2191#issuecomment-274285059
4https://githu b.com/python-pillow/Pillow/issues/672

Copyright 2019 J. Paul Getty Trust. Licensed under a "CC BY 4.0" license. 9

https://github.com/IIIF/awesome-iiif#image-servers
https://github.com/python-pillow/Pillow/issues/2191#issuecomment-274285059
https://github.com/python-pillow/Pillow/issues/672
https://creativecommons.org/licenses/by/4.0/

Getty Common Image Service January-June 2019

« lIPImage

« Loris

« RAIS

« RIIF

« SIPI

+ go-iiif

o jiif-s3
In-depth reports below are for a selected set of implementations (linked in the above list) that satisfy the
key requirements previously indicated.

2.3.1 Selected for Benchmark

lIPImage

Facts

« IlIF Image API supported: 2.0

+ Programming language: C, C++

+ Project page: http://iipimage.sourceforge.net/

+ Repo: https://github.com/iipimage/iipsrv

« Latest push to master or published release (whatever is most recent): 11/2017
+ License: GPLv3

« Notable implementations: NGA, Bodleian (~1M), Wellcome Trust (36M)

Advantages

« Most mature of all server implementations

+ Broadest adoption, even with the largest data sets known

« Very fast

+ Support for special imagery, e.g. multi-spectral (may be an interesting feature for some scientific
images from GRI or GCl)

Limitations

+ Does not support S3 connection

Copyright 2019 J. Paul Getty Trust. Licensed under a "CC BY 4.0" license. 10

http://iipimage.sourceforge.net/
https://github.com/iipimage/iipsrv
https://creativecommons.org/licenses/by/4.0/

Getty Common Image Service January-June 2019

« Only supports JP2 via Kakadu at the moment; OpenJPEG is in the plans.
+ Limited resolver flexibility (only allows adding a prefix to map an identifier to a file on disk).

Cantaloupe

Facts

« IlIF Image APl supported: 2.1

+ Programming language: Java

+ Project page: https://medusa-project.github.io/cantaloupe/

+ Repo: https://github.com/medusa-project/cantaloupe

« Latest push to master or published release (whatever is most recent): 10/2018
« License: University of Illinois/NCSA Open Source License

+ Notable implementations: YCBA

Advantages

+ Very fast (but not as fast as IIPImage)
+ Ruby API allows great flexibility in defining source image retrieval
+ Excellent documentation

Limitations

+ It’s Java, with its memory management woes... However, in general this is a learning curve issue
that stabilizes over time.

Loris

Facts

+ IIIF Image APIs supported: 2.x (?)

+ Programming language: Python

+ Project page: https://github.com/loris-imageserver/loris

+ Repo: https://github.com/loris-imageserver/loris

« Latest push to master or published release (whatever is most recent): 06/2018

Copyright 2019 J. Paul Getty Trust. Licensed under a "CC BY 4.0" license. 11

http://iipimage.sourceforge.net/documentation/images/#JPEG2000
https://medusa-project.github.io/cantaloupe/
https://github.com/medusa-project/cantaloupe
https://github.com/medusa-project/cantaloupe/blob/develop/LICENSE.txt
https://github.com/loris-imageserver/loris
https://github.com/loris-imageserver/loris
https://creativecommons.org/licenses/by/4.0/

Getty Common Image Service

January-June 2019

+ License: Other
+ Notable implementations: GRI, Princeton Library

Advantages

« Written in Python, in theory allows for direct contribution to the software
« Reasonably fast®
+ Can use Kakadu or OpenJpeg for decoding JP2

Limitations

+ Previous experience showed high request failure rate in production
+ Poor documentation

« Difficult setup

» No PTIFF support

« Python 2.x—limited in-house expertise

2.3.2 Reviewed But Discarded

SIPI

Facts

+ IlIF Image APl supported: Unkown

+ Programming language: C++

+ Project page: http://sipi.io

+ Repo: https://github.com/dhlab-basel/Sipi

« Latest push to master or published release (whatever is most recent): 08/2018

+ License: Affero GPL
+ Notable implementations: DH Labs, University of Basel

Advantages

+ Supposedly very fast (performance is one of the key goals for the project)

*Benchmarks between Cantaloupe and Loris were run at AIC and Loris turned out to be even faster under certain conditions.

Copyright 2019 J. Paul Getty Trust. Licensed under a "CC BY 4.0" license.

12

https://github.com/loris-imageserver/loris/blob/development/LICENSE-OpenJPEG.txt
http://sipi.io
https://github.com/dhlab-basel/Sipi
https://github.com/dhlab-basel/Sipi/blob/develop/LICENSE
https://creativecommons.org/licenses/by/4.0/

Getty Common Image Service January-June 2019

+ Configuration is in Lua and allows flexible mapping from URLs to source image locations and other
complex setups
» Good documentation

Limitations

+ Relatively new software; production-readiness, most importantly in high-load and high-volume
scenarios, is unknown

+ No known adopters other than its maintainer, the DH Labs of the University of Basel.

+ Bundled with Kakadu, no other decoder (PTIFF, OpenJPEG) is possible.

Reason(s) For Discarding

« Narrow adopter base
+ Nosignificant advantages over other solutions

go-iiif

Facts
go-iiifisaforkofthe Go1iiif package.

« IlIF Image APl supported: 2.1

+ Programming language: Go (underlying C image library)

+ Project page: https://aaronland.github.io/go-iiif/

+ Repo: https://github.com/aaronland/go-iiif

« Latest push to master or published release (whatever is most recent): 07/2018
+ License: BSD 3-Clause

+ Notable implementations: unknown

Advantages

» S3 connector
+ Uses libvips under the hood which is supposedly a very efficient image processing tool.

Copyright 2019 J. Paul Getty Trust. Licensed under a "CC BY 4.0" license. 13

https://aaronland.github.io/go-iiif/
https://github.com/aaronland/go-iiif
https://github.com/aaronland/go-iiif/blob/master/LICENSE
https://creativecommons.org/licenses/by/4.0/

Getty Common Image Service January-June 2019

Limitations

« Only 2 significant contributors (apparently both from the same company)®. Moreover, the main
maintainer left the project recently, which puts the project at serious risk of deprecation.

+ Lots of add-ons (image filters, etc.) that we may not need and just add to the complexity of the code.

+ The Go language itself is not yet as established as C/C++, Java or Python.

Reason(s) for Discarding

Lack of maturity and possible lack of developer support.

RAIS

Facts

+ IlIF Image APIs supported: 2.1

+ Programming language: Go

+ Project page: https://github.com/uoregon-libraries/rais-image-server

+ Repo: https://github.com/uoregon-libraries/rais-image-server

« Latest push to master or published release (whatever is most recent): 10/2018
« License: CC0 1.0

+ Notable implementations: Historic Oregon Newspapers, UOregon Libraries

Advantages

 S3 connector
« Completely open source (uses OpenJPEG)

Limitations

+ Cannot use Kakadu
+ Only one maintainer
+ Only one production use case

®https://github.com/aaronland/go-iiif/graphs/contributors

Copyright 2019 J. Paul Getty Trust. Licensed under a "CC BY 4.0" license. 14

https://github.com/uoregon-libraries/rais-image-server
https://github.com/uoregon-libraries/rais-image-server
https://github.com/uoregon-libraries/rais-image-server/blob/develop/LICENSE.txt
https://github.com/aaronland/go-iiif/graphs/contributors
https://creativecommons.org/licenses/by/4.0/

Getty Common Image Service January-June 2019

Reason(s) for Discarding

RAIS seems to have been conceived as a small-budget project with a specific use case in mind (the
University of Oregon newspapers repository). Beyond that, and the availability of an S3 connector, RAIS
does not seem to offer any outstanding feature compared to others.

RAIS is only maintained by one person, and has no other major adopter from what | could gather.

2.3.3 Not Reviewed

The following projects were not reviewed in depth, for the reasons explained below:

+ Hymir: no S3 connector, narrow adopter base

« RIIIF: previous experience of poor performance (bundled with Samvera / Sufia)
+ digilib: documentation and code are antiquated.

« iiif_s3: Level 0 implementation only.

2.3.4 Information Sources

This section contains information gathered from peer institutions who are implementing, or have imple-
mented, the candidates previously listed.

Bodleian Libraries
Contact: Andrew Hankinson

The Bodleian Libraries at Oxford University use lIPImage. They serve about 1M images on 4 load-balanced
servers with 4 IIPImage cores each.

Source images are lossless JPEG2000.

Bodleian has never had any problems with this setup outside of regular upgrade and maintenance tasks.

National Gallery of Art
Contact: David Beaudet

NGA uses lIPImage to serve Pyramidal TIFFs. They maintain a separate fork of IIPImage on Github where
they made several improvements. The nga_prod branch is the one used in production at NGA. It is
thoroughly tested and no problems have been reported so far.

Copyright 2019 J. Paul Getty Trust. Licensed under a "CC BY 4.0" license. 15

https://github.com/NationalGalleryOfArt/iipsrv/tree/nga_prod
https://creativecommons.org/licenses/by/4.0/

Getty Common Image Service January-June 2019

There is an ongoing effort to add a S3 connector among others.

Topics on the NGA fork are occasionally merged into the upstream repo. There seems to be agreement
that the S3 connector enhancement isimportant enough to deserve a pull request upstream. On the other
hand, a solution that does not need implementing a S3 connector for IIPImage is available, as described
in Access Master Cache.

The NGA branch also contains an enhancement that allows to properly upscale images via request headers.
This is probably not a feature that we are interested in.

NGA went through an extensive data migration (100,000 images pulled from their legacy DAMS and
converted to PTIFFs) which produced interesting results related to the PTIFF conversion. Vips was used to
generate the pyramidal images which was many times faster than ImageMagick and produced images 1/3
of the size. A workaround was devised to overcome a scaling bug in VIPS. Details about the process are in
the Recipes appendix.

Yale Center for British Art
Contacts: Michael Apppleby, Eric James
YCBA uses 2 instances of Cantaloupe pulling from S3, served by Cloudfront.

Performance has been quite stable and load is in the average very low. No major issues reported.

Wellcome Trust
Contact: Tom Crane, Digirati

Digirati has implemented a very large image set for the Wellcome trust (32M images) and is planning to
more than double the amount (72M) soon.

This setup uses lIPImage with JPEG2000. The server is rock solid, but the main challenge is cache man-
agement for fast random access to derivatives.

The image server accesses a custom intermediate store which provides a NFS mount point. Derivatives
most frequently accessed are stored there in faster SSD drives, least used ones are in S3. Performance
tweaks, which are challenging given the size of the collection, are underway.

Copyright 2019 J. Paul Getty Trust. Licensed under a "CC BY 4.0" license. 16

https://creativecommons.org/licenses/by/4.0/

Getty Common Image Service January-June 2019

2.4 Gateway Service

In addition to implementing an image server, a "gateway" service needs to be implemented in order to
capture and manipulate incoming requests. It is important that this component be both lightweight and
modular, striving to tax the traffic as little as possible.

The Gateway Service needs to be able to fulfill different tasks (not all of them implemented from the
outset):

+ Providing a temporary mapping of IlIF Image APl v3 features if the chosen image server does not
support 3.0 at the moment of the launch.

+ Map URLs beyond the capabilities of the image server.

+ Implement caching strategies that the image server is not able to handle.

+ Providing a redirect service for changing URIs.

Specific functions of the service are described below.

2.4.1 Image APl versioning

While we want to adopt Image APl v3 as soon as possible, it may be necessary to maintain compatibility
with v2 for some time, maybe even for a long time if some live services depending on the v2 API are not
updated. this is also valid for future major iterations of the llIF API. Therefore, a versioning scheme should
be devised.

One approach is to use a prefix to indicate which version of the APl is being requested, e.g:
<webroot>/iiif/<API version>/<id>/<parameters>

Where <API version> is an integer corresponding to the major Image API version. A URL without
<API version/> would redirect to the latest available version. This solution would work best with the
Image API.

An alternative solution is to use content negotiation via HTTP headers. E.g.:
Accept: application/ld+json;profile=http://iiif.io/api/presentation/3/context.json

would request a V3 API. As for the URL-based approach, the default request would point to the latest
version available on the server.

This approach is a better fit for the Presentation API.

Copyright 2019 J. Paul Getty Trust. Licensed under a "CC BY 4.0" license. 17

https://creativecommons.org/licenses/by/4.0/

Getty Common Image Service January-June 2019

This approach presents some problems with caching. Since different API versions have the same URL, a
caching server such as Varnish cannot distinguish between the two. However there are solutions to this

issue’.

2.4.2 Caching

Raw image server performance represents only one of the factors for the successful implementation of an
efficient and responsive image delivery system. The other major component is image caching.

In order to scale up to millions of images and potentially thousands of concurrent requests, a caching
strategy must be devised. It is very unlikely that this strategy will be optimal from the outset, because
there is no preexisting formula that can fit all the unique parameters that our system will present. However,
having a starting setup that is as close as possible to the optimal one will be critical to a satisfactory user
experience upon launch.

The factors upon which the caching strategy hinges off are:

+ Serving both large and small images quickly (i.e. with the lowest possible latency perception for the
end user).

+ Avoiding astronomical storage costs.

+ Avoiding duplicate processing.

+ Avoiding undue manual maintenance.

+ Being adaptable to adjustments driven by observing traffic patterns.

The strategy to be devised is based upon the following guidelines:

+ Creating a source image cache that stores local copies of images retrieved from a network.

+ Creating a derivative cache that stores generated derivatives so that they the image server doesn’t
have to process it for every request.

+ Using fast, and presumably more expensive, storage (i.e. SSD) for the most frequently requestsd
contents, and less expensive, less fast storage for the full data set, in a way that balances storage
costs and availability. This is expected to be one of the most variable parameters that will need
most adjustments over time.

+ Set cache expiration policies based on age and/or checksum so that stale caches are automatically
removed, without manual intervention needed. This also is a parameter that needs adjustments as
experiecnce with real-world traffic is gathered.

"https://drive.google.com/open?id=1RL8cJSM1A4PSAgYyxRftatvtRQJK4XRK

Copyright 2019 J. Paul Getty Trust. Licensed under a "CC BY 4.0" license. 18

https://drive.google.com/open?id=1RL8cJSM1A4PSAgYyxRftatvtRQJK4XRK
https://creativecommons.org/licenses/by/4.0/

Getty Common Image Service January-June 2019

Access Master Cache

This cache layer "lazily" (i.e. upon first user request) stores a copy of the access master in the most
efficient storage tier possible (e.g. the image server’s local filesystem) before sending the image data to
the derivative processor. When another derivative for the same source is requested, if the cache has not
expired, the local cache is used. Oherwise the source is retrieved and stored again.

Itis important to clear the derivative cache when the source cache is cleared.

Cache Rotation

An additional feature is necessary for maintaining a reasonably sized cache, i.e. rotating out images from
the cache according to some strategy. Since this layer is built on the fastest, and therefore most expensive,
storage tier, we cannot afford to store a large amount of images that are rarely accessed in this tier.

In order to balance storage costs and performance, a script should be devised to prune the cache based
on thefiles’ last access timestamp.

Redirect Service

Even though image and presentation element identifiers should be as stable as possible, it is inevitable
that with time some identifiers may become unavailable, even though the resource they refer to is still
published. In order to ensure continuous availability of resources that are being pointed to by out of date
Web document, an archive of historical identifiers with a reference to the most current, authoritative
identifier should be maintained.

The Gateway Service is a convenient place to manage the redirection traffic by parsing incoming identifier
requests, looking up the ID archive, and redirecting decommissioned ones to up to date ones or error
pages (in case the resource is gone as well).

2.4.3 Derivative Cache

Similarly to the access master cache, the derivative cache is critical to a smooth user experience. The shim
or the image server (depending on the server implemented should send a 304 NOT MODIFIED status
code if a derivative is requested that already exists in the derivative cache.

Derivative caching may be handled by the image server. Supposedly, the server creates and stores a new
file for each specific combination of IlIF parameters and image identifier. What may be necessary to handle

Copyright 2019 J. Paul Getty Trust. Licensed under a "CC BY 4.0" license. 19

https://creativecommons.org/licenses/by/4.0/

Getty Common Image Service January-June 2019

separately is pruning and purging. The former refers to periodically removing derivatives not recently
used, using the same process as for the access masters; the latter, to removing all the derivatives of an
access master when this is removed from the cache.

Thumbnails

A particular performance-related challenge is the creation of occasional thumbnails for large images. If an
index page is requested containing many thumbnails of uncached images, those images must be retrieved
in their master format to just create a thumbnail.

A possible solution to this issue could be to pre-compile thumbnails right after the access masters are
generated. This way the processing effort is spread out in time instead of being concentrated at request
time.

The issue with this approach is that there could be mutiple applications requesting different thumbnail
sizes, and those sizes may change any time. It is not trivial to keep track of which thumbnail sets are to be
maintained for all possible clients.

Another strategy could be to balance the cache expiration based on the image size; i.e. smaller images,
whose deletion would reclaim little to negligible storage space, would be kept for longer time than larger
images, whose cleanup is more effective.

The best initial approach may be to perform some usability tests before implementing any one-off caching
strategy that creates more maintenance work. If performance results to be unacceptable for a large enough
percentage of requests, such one-off solution may be necessary.

2.4.4 Web Front End & Load Balancing

In a production environment, it is imperative to run more than one image server instance in order to
provide adequate bandwidth and service availability. These nodes need to be coordinated by a load
balancer.

Avery good candidate for this task is Nginx, which is a very robust, mature web server with a very small
resource footprint. Nginx is able to handle large amounts of concurrent connections and has excellent
load balancing capabilities.

For larger and more geographically distributed scenarios (as GCIS may very likely end up becoming), more
complex setups may be orchestrated by dedicated services such as AWS CloudFront. This may also replace

Copyright 2019 J. Paul Getty Trust. Licensed under a "CC BY 4.0" license. 20

https://creativecommons.org/licenses/by/4.0/

Getty Common Image Service January-June 2019

local caching proxies with its edge caching features. Nginx would still be used in front of each image server
instance.

2.5 Manifest Service

Alongside with the image delivery (IlIF Image API) service and related tools, a manifest generation and
delivery (llIF Presentation) service needs to be implemented.

In broad lines, this service consists of an ETL framework that converts structural metadata related to the
published images into IlIF manifests, and a web server that exposes such manifests to the Web.

The structure of such service is out of the scope of this document, since it is a component tightly related
to the Getty’s information architecture and data models.

As demand for more specific manifests representing special or user-defined collections of resources grows,
a dynamic manifest generation service may become necessary. This service has not been completely
defined in scope yet.

2.6 ETL And Migration

The access master images used by the image server to generate derivatives are created from specific files
(called "Modified Masters" in Rosetta, and "Access Files" in OTMM) with specific characteristics (however
the presence of outliers should be accounted for).

Master images are retrieved (for the first phase of this project) from two existing DAM servers: Rosetta (for
research and library contents) and OTMM (for museum contents).

Two sets of discrete but related tasks need to be accomplished:

1. Retrieve all the images that make up the initial data set, and generate related manifests (migration).
2. Ensure that new images are automatically harvested and their related manifests are generated as
they are created in the source repositories (ETL).

Both projects need ad-hoc code to be written which will use the same underlying business logic for
connecting to the source systems, find and retrieve the images, convert them to access masters, and
deposit them into a store accessible by the image server; as well as the manifest generation functionality.

Copyright 2019 J. Paul Getty Trust. Licensed under a "CC BY 4.0" license. 21

https://creativecommons.org/licenses/by/4.0/

Getty Common Image Service January-June 2019

2.6.1 ETL Framework

The ETL operations will be initially accessible via CLI. However, it is important to separate the interface
layer from the controllers from the outset, so that a REST API can be easily added later on in case a remote
system needs to interact with the framework (e.g. event-driven integration software). Initially, the most
practical way to run the ETL operations is via cron jobs.

Itis important to build a strong initial foundation for the ETL code, which should be easy to debug and
expand. Configuration-based mapping, which allows to make minor changes to conversion parameters
without touching the core business logic, is strongly recommended.

2.6.2 Migration Scripts

The part of the code responsible for one-time migration(s) will be eventually discarded, however it is
important to build it so that it can be repurposed for related projects later. These scripts should be able to
import the core functionality of the ETL framework as a module in order to reuse common business logic.

2.7 Storage Technology and Vendors

Since storage is going to be a major cost factor for this project, it may be valuable to shop for different
service providers offering storage that uses the S3 protocol. There are a number of such services®, and
while Amazon is the most mature of all and offers competitive prices, a comparison may be still worth
while (unless there is a specific reason to consistently use AWS).

3 Benchmarks
The purpose of these benchmarks is to establish the most resource-efficient combination of server soft-
ware, image processor, and source image format.

Note: This is not to be considered the only factor to pick a winner. Other important factors should be
considered as indicated in the Key Requirements.

8https://en.wikipedia.org/wiki/Amazon_S3#S3_API_and_competing_services

Copyright 2019 J. Paul Getty Trust. Licensed under a "CC BY 4.0" license. 22

https://en.wikipedia.org/wiki/Amazon_S3#S3_API_and_competing_services
https://creativecommons.org/licenses/by/4.0/

Getty Common Image Service January-June 2019

3.1 Image Formats & Encoding
3.1.1 Test Sources and Setup

About 1,000 sample images have been chosen from the GM and GRI archives to provide an initial data set
to test the encoding and decoding of PTIFF and JP2 from high-resolution TIFF images.

The images have been encoded to preserve original size, aspect ratio and cropping area. All images have
been converted to a sSRGB color profile if they had a different color profile assigned.

PTIFFs used for this benchmark have been encoded with the previously described tools. JP2s have been
encoded with Kakadu using the following script:

kdu_compress -1i $in_path -o Sout_path Clevels=6 Clayers=6 \
"Cprecincts={256,256},{256,256},{128,128}" "Stiles={512,512}" Corder=RPCL \
ORGgen_plt=yes ORGtparts=R "Cblk={64,64}" -jp2_space sRGB Cuse_sop=yes \
Cuse_eph=yes -flush_period 1024 -rate 3

Of the 1,000 sample images, 6 of them have been analyzed visually, comparing each source TIFF with its
PTIFF and JP2 derivatives.

3.1.2 Test Results

Encoding Speed

The time elapsed to convert all the Museum images (504 files, ~44 Gb) has been used to measure the
encoding performance by using the time command on a batch conversion script.

Time of conversion for PTIFF:

real 79m28.083s
user 14m49.999s
sys 21m54.979s

Time of conversion to JP2:

real 25m31.415s
user 29m3.426s
sys Tm36.416s

PTIFF encoding took over 3 times as long as JP2 encoding.

Copyright 2019 J. Paul Getty Trust. Licensed under a "CC BY 4.0" license. 23

https://creativecommons.org/licenses/by/4.0/

Getty Common Image Service January-June 2019

One thing to be noted is that all along the conversion process, the PTIFF conversion script ran single-
threaded, while Kakadu ran across all 4 processors available.

Decoding Speed

Decoding speed has been measured through IlIF server delivery. [IPImage is the only server tested that
supports both PTIFF and JP2, and both setups have been tested. The results are in the Image Server
Benchmark section.

Image Size

Image size comparison is as simple as running du on the folders containing the respective PTIFF anmd
JP2 derivatives.

PTIFF dfolder size:
10412528 ptiff
JP2 dfolder size:
11259444 jp2

The JP2 folder overall is about 8% larger. Some JP2 images are slightly smaller, some others slightly larger.

Image Quality

The quality of the PTIFF and JP2 derivatives was compared in terms of color fidelity to the original image.
The Imaging department ran some analysis of the derivative images that highlights the pixel-wise value
differences from the original in each image.

The following image shows the resulting analysis. On the left of the image is the detail of the original TIFF
image sampled. On the top and bottom right corner are measurements of deviation from the original of,
respectively, the PTIFF and JP2 files. Black pixels indicate an exact match with the original value, white a
non-match.

Copyright 2019 J. Paul Getty Trust. Licensed under a "CC BY 4.0" license. 24

https://creativecommons.org/licenses/by/4.0/

Getty Common Image Service January-June 2019

Note that the amount of deviation is not measured in the image above. To the naked eye, the images look
nearly identical. In fact, a quantitative analysis of the different pixels reveals no clear difference:

Originalimage

Copyright 2019 J. Paul Getty Trust. Licensed under a "CC BY 4.0" license. 25

https://creativecommons.org/licenses/by/4.0/

Getty Common Image Service January-June 2019

Quantitative difference (brighter areas are more different) between original and PTIFF derivative.

Quantitative difference (brighter areas are more different) between original and JP2 derivative.

Note: the two delta images have been equally gamma-corrected for readability.

Copyright 2019 J. Paul Getty Trust. Licensed under a "CC BY 4.0" license. 26

https://creativecommons.org/licenses/by/4.0/

Getty Common Image Service January-June 2019

3.2 Image Servers
3.2.1 Reference Data Set

The reference data set used for the benchmark is derived from 1,000 distinct image files, semi-manually
chosen to represent wide diversity in size, color distribution, embedded metadata, original format, etc.

Images are coarsely grouped by size ranges, in order to make it easier to perform tests based on large vs.
small sources.

2 sets of source files are derived from the above 1,000 images: one as JP2 and one as pyramidal TIFF.

Note: Given the heterogeneous sources of the production masters, variations in all the parameters
mentioned below should be expected in the source images.

Image Encoding Parameters

+ Original size

+ RGB, 8 bit per channel

« All layers flattened

+ Non-RGB channels discarded
+ SRGB Color profile

« All EXIF metadata retained

For JPEG2000:

« Compression: lossy (JPEG), quality: 90%

+ Resolutions: variable, based on image size
+ Precinct size: 256x256

+ Code block size: 64x64

For Pyramidal TIFF:

+ Pixel order: tiled

« Compression: lossy (JPEG), quality: 90%

+ Resolutions: variable, based on image size
+ Tile size: 256x256

Copyright 2019 J. Paul Getty Trust. Licensed under a "CC BY 4.0" license. 27

https://creativecommons.org/licenses/by/4.0/

Getty Common Image Service January-June 2019

3.2.2 Load Test Servers
Each IlIF server setup consists of two or more Docker containers, one of which contains an Nginx server

and load balancer, and the other(s) one or more instances of the image server put to the test.

All the setups are deployed an run within their containers inside an AWS EC2 instance (the test "server")
with the following characteristics:

« CPU: 8x Intel(R) Xeon(R) Platinum 8175M CPU @ 2.50GHz
+ RAM: 32 Gb
+ Data storage: Amazon gp2 type (SSD)

In all cases, all caches are turned off, i.e. each request sent to the server results in a full computation of a
derivative.

A separate host is dedicated to the client that performs the load test (the test client):

« CPU: 4x Intel(R) Xeon(R) Platinum 8175M CPU @ 2.50GHz
+ RAM: 16 Gb
+ Data storage: Amazon gp2 type (SSD)

3.2.3 Benchmark Parameters

The benchmark consists in comparing the finalist products based on different "axes": server setup, image
sizes, and concurrent requests. A test is performed for each of the variants in each axis, if compatible (e.g.
Cantaloupe and Loris do not support PTIFFs so the test with PTIFFs is skipped for those servers).

Axis 1: Server Setup

The following server setups are tested:

Cantaloupe with Kakadu

Cantalouperunsinasingle container and automatically spawns processes as needed. Heap size is statically
set to 12Gb.

Note: Cantaloupe with PTIFF is not tested. This is because for optimal TIFF performance, the JaiPro-
cessor should in theory be used according to the manual. However, the same site reports that JAl has
been long deprecated. The native Java2D processor can be used, but it is considerably slower. For this
reason, it is probably not worth testing Cantaloupe with PTIFF images.

Copyright 2019 J. Paul Getty Trust. Licensed under a "CC BY 4.0" license. 28

https://medusa-project.github.io/cantaloupe/manual/4.0/images.html#Processor%20Considerations
https://medusa-project.github.io/cantaloupe/manual/4.0/processors.html#JaiProcessor
https://medusa-project.github.io/cantaloupe/manual/4.0/processors.html#JaiProcessor
https://creativecommons.org/licenses/by/4.0/

Getty Common Image Service January-June 2019

IIPImage with Kakadu

The standalone iipsrv. fcgi FastCGl aplication does not spawn sub-processes automatically, therefore
6 separate containers are deployed, each one with a single IIPImage instance. Nginx is set up to actas a
load balancer.

Itis mentioned in the IIPImage documentation that OpenJPEG support is in the works, but there is no
timeline for its release, therefore lIPImage with OenJPEG is not tested.

IIPImage with PTIFF

This is a version of IIPImage without Kakadu support. This removes a number of system dependencies.
The base image for this build is Alpine Linux, while the builds including Kakadu are ArchLinux. This setup
as well consists of 6 IIPImage containers load balanced by Nginx.

Loris with Kakadu

Loris server is obtained by a stock image with the configuration file modified to fit within the benchmark
parameters. For some reason, the caching directives in the passed configuration did not seem to be
honored, and the logging showed that caching was not disabled completely. It is uncertain at the moment
which implications on real performance this would have.

6 Loris cores are deployed in this setup, load balanced by Nginx.

AXxis 2: Source & Derivative Sizes

Each of the server setups is tested with ranges of source image sizes, if an organization of these by size
ranges is possible. Different tests with different derivative sizes are also performed:

+ Large sources (>75 Mpx), full size derivatives

+ Large sources, large derivatives (3000px on longer side)

+ Large sources, thumbnails (125px on longer side)

« Medium sources (between 10 and 75 Mpx), full size derivatives
+ Medium sources, large derivatives

« Medium sources, thumbnails

« Small sources (< 10 Mpx), full size derivatives

+ Small sources, large derivatives

« Small sources, thumbnails

Copyright 2019 J. Paul Getty Trust. Licensed under a "CC BY 4.0" license. 29

http://iipimage.sourceforge.net/documentation/images/#JPEG2000
https://creativecommons.org/licenses/by/4.0/

Getty Common Image Service January-June 2019

Axis 3: Concurrent Connections

Each of the server setup + source/derivative combinations is tested with different sets of concurrent users
to benchmark parallelism:

« 10 concurrent connections
« 100 concurrent connections
« 1,000 concurrent connections

Note: 1000 connections is an extremely large number, that could be reached in a real world scenario only
very rarely and for very brief moments. In production, it is assumed that the vast majority of the requests
is fulfilled by the cache, while the test removes the cache completely.

3.2.4 Test Instruments and Methodology

The test is carried out using Locust, a Python-based HTTP load testing application whilch allows a great
deal of flexibility in automating requests.

Each load test session targets one server setup and performs all combinations of requests within a fixed
time of 10 minutes. Some parameters are randomized, others are fixed.

Each Locust client performs the following actions:

+ Select an image identifier from one of three lists. One list contains identifiers of images of less than
10 Mpx, one images between 10 and 75 Mpx, and one 75 Mpx and up.
+ For each image identifier, the client requests:
- 50 thumbnails of 128 pixels on the longer side;
- 10images of 3000 pixels on the longer side;
- limage at native size.

During the load test Locust is run in "no UI" mode that dumps results in a CSV file. These results, attached
in Appendix 2, are broken down by combination of source image size and derivative size.

All servers ran with all caches turned off (except for Loris, as noted above).

3.2.5 Test Result Summary

Output

The fastest and most consistent server setup is [IPImage with pyramidal TIFF images. A similar output
consistency is provided by IIPImage with Kakadu, albeit with a lower rate of requests per second.

Copyright 2019 J. Paul Getty Trust. Licensed under a "CC BY 4.0" license. 30

https://locust.io/
https://creativecommons.org/licenses/by/4.0/

Getty Common Image Service January-June 2019

Cantaloupe maintains a quite good performance, but still quite distanced from the IIPImage results.

Loris has the lowest output rate by far. It is also extremely uneven in output rate and resource usage. In all
benchmarks, and in particular the one with 10 concurrent connections, there are wide gaps in which the
output is near zero and the resource usage seems to plummet for several seconds. It is also noteworthy
that only 3 of the 6 available cores were sending any output.

Average Response Times

Given the very broad distribution of response times, especially at 100 concurrent connections and above,
it is not easy to distinguish the bottleneck caused by the job queue and the one from the actual image
processing. The latter is probably most prominent in the 10 connections range.

Average Response Times for 10 Concurrent Connections

lipsrv_ptiff, small source
iipsrv_ptiff, medium source
=&~ iipsrv_ptiff, large source

loris, small source

loris, medium source
—8—loris, large source

iipsrv_jp2, small source
=—8— iipsrv_jp2, medium source
103 - =—e= iipsrv_jp2, large source

cantaloupe, small source
—8= cantaloupe, medium source

=—#— cantaloupe, large source \/

Pa—

Response Time (ms)

107 -

128 "tile" 1024 4096
Derivative Size (px)

Copyright 2019 J. Paul Getty Trust. Licensed under a "CC BY 4.0" license. 31

https://creativecommons.org/licenses/by/4.0/

Getty Common Image Service January-June 2019

Average Response Times for 100 Concurrent Connections

iipsrv_ptiff, small source

iipsrv_ptiff, medium source
=& iipsrv_ptiff, large source
iipsrv_jp2, small source
iipsrv_jp2, medium source
=#— iipsrv_jp2, large source
loris, small source
—®—— _e— loris. medium source
104 i ¢ ——— _e— loris, large source
cantaloupe, small source

I

=#— cantaloupe, medium source

Response Time (ms)

103_

128 "tile" 1024 4096
Derivative Size (px)

Average Response Times for 1000 Concurrent Connections

4% 104

3x 104

2x 104

iipsrv_jp2, small source
iipsrv_jp2, medium source
=8 lipsrv_jp2. large source
iipsrv_ptiff, small source
iipsrv_ptiff, medium source
=#— iipsrv_ptiff, large source
cantaloupe, small source

104 a =8— cantaloupe, medium source /

—8— cantaloupe, large source
128 "tile" 1024 4096
Derivative Size (px)

Response Time (ms)

Note that some results are not quite consistent. Probably taking a larger sample by prolonging the test
time and/or having different derivative size brackets (e.g. 128, 1024, 3000, full) may yield more reliable

results.

Copyright 2019 J. Paul Getty Trust. Licensed under a "CC BY 4.0" license. 32

https://creativecommons.org/licenses/by/4.0/

Getty Common Image Service January-June 2019

Median Response Times

Given that about 50% of the response times are in the 50% percentile, it may be worth while considering
the median measurements as well:

Median Response Times for 10 Concurrent Connections

iipsrv_ptiff, small source

iipsrv_ptiff, medium source
=8 iipsrv_ptiff, large source

loris, small source

loris, medium source
=—#—loris, large source

iipsrv_jp2, small source
=8— iipsrv_jp2, medium source
=—8— iipsrv_jp2, large source

cantaloupe, small source
=—#— cantaloupe, medium source
=—#— cantaloupe, large source

——

=

o
w
I

Response Time (ms)
H
o

101_

128 "tile" 1024 4096
Derivative Size (px)

Median Response Times for 100 Concurrent Connections

iipsrv_ptiff, small source
iipsrv_ptiff, medium source
=8 iipsrv_ptiff, large source
iipsrv_jp2, small source
iipsrv_jp2, medium source
== iipsrv_jp2, large source
loris, small source
4 | = loris, medium source
107 1 —a— loris, large source
cantaloupe, small source
=—#— cantaloupe, medium source
=—8— cantaloupe, large source

Response Time (ms)

103_ /

128 "tile" 1024 4096
Derivative Size (px)

Copyright 2019 J. Paul Getty Trust. Licensed under a "CC BY 4.0" license. 33

https://creativecommons.org/licenses/by/4.0/

Getty Common Image Service January-June 2019

Median Response Times for 1000 Concurrent Connections

4
6x10
, /
4x10
—_
£ .
<= 3 x 104 -_— .,
£
H 4
v 2x10
¢
Q iipsrv_jp2, small source
o lipsrv_jp2. medium source
$ —a— iipsrv_jp2, large source
o iipsrv_ptiff, small source
iipsrv_ptiff, medium source
4 =o— iipsrv_ptiff, large source
10 T cantaloupe. small source
—8— cantaloupe, medium source _._____—-———'__-_-_—.
o =—#— cantaloupe, large source

128 "tile" 1024 4096
Derivative Size (px)

Note that Loris, when it does not return an error code, is actually quite competitive. It has not been
discerned, however, whether the low times are due to caching, which was apparently not completely
disabled.

Requests Per Second

The RPS should increase with the number of concurrent connections.

Copyright 2019 J. Paul Getty Trust. Licensed under a "CC BY 4.0" license. 34

https://creativecommons.org/licenses/by/4.0/

Getty Common Image Service

January-June 2019

Requests Per Second for 10 Concurrent Connections

101 -

100 4

iipsrv_ptiff. small source
iipsrv_ptiff, medium source
=@ iipsrv_ptiff, large source
loris, small source
=a-loris, medium source
—a— loris, large source
== iipsrv_jp2, small source
=#= iipsrv_jp2, medium source
—8— iipsrv_jp2, large source
cantaloupe, small source
—8— cantaloupe, medium source
=—#= cantaloupe, large source

Response Time (ms)

Vi

10—1 4

128

"tile" 1024 4096

Derivative Size (px)

Requests Per Second for 100 Concurrent Connections

101-

iipsrv_ptiff, small source
iipsrv_ptiff, medium source
=@ _iipsrv_ptiff, large source
iipsrv_jp2, small source
== lipsrv_jp2, medium source
—8— lipsrv_jp2. large source
—a— loris, small source
=8— loris, medium source
=—e= loris, large source
cantaloupe, small source
—8= cantaloupe, medium source
—8— cantaloupe, large source

10° 4

Response Time (ms)

i

1071 4

128

"tile" 1024 4096

Derivative Size (px)

Copyright 2019 J. Paul Getty Trust. Licensed under a "CC BY 4.0" license.

35

https://creativecommons.org/licenses/by/4.0/

Getty Common Image Service January-June 2019

Requests Per Second for 1000 Concurrent Connections

10 1]
£
£ 10°4
.|:
1}
g
Q iipsrv_jp2, small source
o lipsrv_jp2. medium source
$ —1 | = iipsrv_jp2, large source
o 10 E iipsrv_ptiff, small source
iipsrv_ptiff, medium source
== iipsrv_ptiff, large source
cantaloupe, small source
—8— cantaloupe, medium source
=—#— cantaloupe, large source
T T T T
128 "tile" 1024 4096
Derivative Size (px)
Stability

[IPImage yielded no failed request in 10 minmutes of full activity, in all benchmarks. Some 404 errors in
the JP2 results were caused by a missing image.

Cantaloupe has a notable error rate—mostly gateway timeouts, but Java errors have been noticed in the
application logs as well. It is likely that adjusting memory settings would resolve at least some of those
issues.

With Loris, 10 concurrent connections returned a conspicuous number of errors. 100 concurrent connec-
tions resulted in an overwhelming majority of failures (about 42 errors for each successful request). A test
with 1000 connections was not performed.

Test result details, including request charts, are attached in Appendix 2.

Resource Usage

The following images illustrate resource usages for each of the test sets with 10, 100 and (where applicable)
1000 concurrent connections.

Average Load

Copyright 2019 J. Paul Getty Trust. Licensed under a "CC BY 4.0" license. 36

https://creativecommons.org/licenses/by/4.0/

Getty Common Image Service

January-June 2019

Value

W oos

5.65

W s

s e o

avg
521
226
464

16125

Max
13.25
693
9.87

Metric
systemload.1
systemload.1s
systemload.5

16:30 16:35 16:40 16:45 16:50 16:55 17:00 17:05

Tags |
hostior-dev-ecz-iifubuntu-01
hostior-gev-ecZ-iifubuntu-1

hostior-dev-ecZ-iifubuntu-d1

Value

W oo

1193

| EEEN

min
0
09
001

avg
1211
811
"

Max
2441
1493

2000

Metric
systemiload.1
systemiload.15
systemload 5

17:80 17:45 17:50 17:55 18:00 18:05 1810

Tags |
host:or-gev-ec2-iiFubuntu-01

hostior-dev-ec2-iiFubuntu-01

host:or-dev-ec2-iiFubuntu-1

Copyright 2019 J. Paul Getty Trust. Licensed under a "CC BY 4.0" license. 37

https://creativecommons.org/licenses/by/4.0/

Getty Common Image Service January-June 2019

240
20
200
180
150
140
120
100

5 \
50

40

2 Y

9

15:20 1525 1530 1535 15:40 1545 1550
Value Min Avg Max Metric Tags |

W 62 0 9926 19907 system.ioad.] host;or-dev-ec2-iFubuntu-01
9458 526 6299 11923 5 host:or- Fubuntu-01
W 7289 007 8374 15627 system.loa

16:06 16:07 16:08 16:09 16:10 1611 16:12 1613 16114 16115 16116 16117 16:18 16:19 16:20 16:21 1622 1623 16124

Value Min Avg Max Metric
W oo o 17 808 s
1358 1358 2656 4512 s
W ooss 035 341 781 systemioass

Memory Usage

The following graphs show memory usage of the whole system. These charts may be interesting for the
purpose of horizontal scalability, where the allocated memory of dynamically generated processes is a

Copyright 2019 J. Paul Getty Trust. Licensed under a "CC BY 4.0" license. 38

https://creativecommons.org/licenses/by/4.0/

Getty Common Image Service January-June 2019

major cost factor.

The only setup that displays a remarkable memory consumption is Cantaloupe, as expected from a
high-load Java application.

X

Memory breakdown 37m Feb 18,4:28 pm - Feb 18, 5:05 pm -« »

06
386
366
346
326
306
256
266
246
226

06

186

166

146

16:30

Q, Filter serie
Value Min Avg Max Metric Tags |
. 31.35G 31.02G 31.33G 31.52G system.mem.usable hostior-dev-ec2-iiF-ubuntu-01
. 1556 1376 157G 1.88G (system.mem.total - system.mem.usable) host:or-dew-ec2-iif-ubuntu-01
Memory breakdown 37m Feb 18, 5:34 pm-Feb 18,6:11 pm v > » X
406

Q Filter series
Value Min Ay Mex Metric Tgs 4
I 51316 30866 31226 31386 systemmemusable hostior dev-eca iFbuntu-01
. 159G 1.56G 168G 2.04G (system.mem.total - system.mem.usable) host:or-dev-ec2-iifubuntu-01

Copyright 2019 J. Paul Getty Trust. Licensed under a "CC BY 4.0" license. 39

https://creativecommons.org/licenses/by/4.0/

Getty Common Image Service

January-June 2019

Memory breakdown 113m feb20,2:09 pm-Feb 20,402 pm -] »

206
386
366
346
326
206
286
266
246

26

206

186

166
146

06
1410 14115 14:20 14225 14:30 14:35 14:40 14:45 14550 14155

Q-

Value Min Avg Mox Metric
] 31.66G 19.586 376G 31.66G systemmemusable
W 246 1246 914G 133G (systemmem.total - system mem.usable)

Memory breakdown 18m Feb 20, 4:05 pm- Feb 20, 4:22 pm [RPPREE

406
386
366

346

15:15 15:20 15:25

Tags |
hostior-dev-ecziifubuntu-01
hostior-dev-ecz-iifubuntu-01

15:35

15:40

X

1545 15:50 15:55 16:00

X

Q, Filter serie

Value Min Avg Max Metric
[31346 30916 31316 31676 systemmem.usable
M 156G 1236 1596 199G (systemmem.iotal - systemmemusable)

4 Conclusions

Tags |
host:or-dev-ec2-iiFubuntu-01
nostior-dev-ec2-IFubuntu-01

[IPImage is clearly the most suitable server for the GCIS project, given the following advantages:

« Superior performance
+ Highest consistency of results

Copyright 2019 J. Paul Getty Trust. Licensed under a "CC BY 4.0" license.

40

https://creativecommons.org/licenses/by/4.0/

Getty Common Image Service January-June 2019

+ Highest stability

+ High scalability

+ Resource efficiency

+ Widespread adoption

+ Longest history

+ Solid development support

It is woth noting how intense traffic can put even IIPImage in a difficult spot. Even though IIPImage never
failed to deliver an image during the tests, most of the timings in the 100-connection scenario (which is
quite plausible) are unacceptable. This will have to be resolved with a judicious scaling setup or by further
configuration adjustments for the application, load balancer and system.

Pyramidal TIFF (PTIFF) is the file format to be adopted for the access masters, given the following advan-
tages over JPEG2000 (JP2):

+ Much faster decoding speed
+ No need to depend on commercial software
« More processing options

The only clear drawback of PTIFF is the encoding time, as mentioned previously. Other advantages of
JP2 may be related to partial retrieval of the images, such as in tile extraction, but that has not yet been
framed into a practical use case. The performance benchmarks include random region requests that seem
to perform very well.

These conclusions should guide the next implementation steps, consisting of setting up an lIPImage
cluster for production use and converting source images into access masters. Very careful testing, in a
wider variety of scenarios than the ones used for the benchmarks presented here, should be performed in
order to determine the optimal setup. Adjustments and compromises will very likely have to be made, e.g.
to favor faster delivery of frequently requested sizes such as thumbnails, while avoiding exceedingly long
delays for unusually large derivative and/or unusually high load.

Scaling strategies should be carefully studied as well. If using AWS autoscaling, itis necessary to understand
how each IIPImage instance uses its own resources and how it performs parallel work with the other
instances.

Copyright 2019 J. Paul Getty Trust. Licensed under a "CC BY 4.0" license. 41

https://creativecommons.org/licenses/by/4.0/

Getty Common Image Service January-June 2019

5 Appendix 1: Recipes

5.1 JP2 encoding parameters

The following are command-line parameters used by different implementers to encode lossy JPEG2000
files.

The Getty (thanks to Chris Edwards):

kdu_compress -1i input.tif -o output.jp2 \

-rate 1.5 Creversible=yes Clayers=1 Clevels=7 \
Cprecincts={256,256},{256,256},{128,128} Corder=RPCL \
ORGgen_plt=yes ORGtparts=R Cblk={64,64} Cuse_sop=yes

From the image_processing Wiki (with all options explained):
kdu_compress -1i 1input.tif -o output.jp2 Clevels=6 Clayers=6 \
"Cprecincts={256,256},{256,256},{128,128}" "Stiles={512,512}" \

Corder=RPCL ORGgen_plt=yes ORGtparts=R "Cblk={64,64}" \
Cuse_sop=yes Cuse_eph=yes-flush_period 1024 -rate 3

The following are gathered from a recent survey on llIF implementations. There is no association to the
institution using these. :

kdu_compress -i <path> -o <path> -rate - Creversible=yes Clevels=6 \
Clayers=6 Cprecincts={256,256},{256,256},{128,128} Stiles={512,512} \
Corder=RPCL ORGgen_plt=yes ORGtparts=R Cblk={64,64} Cuse_sop=yes \
Cuse_eph=yes -flush_period 1024

5.2 Source Image Generation

Very efficient generation of PTIFF files was performed by NGA with vips and t1iffcp to get around a
VIPS bug®:

https://github.com/NationalGalleryOfArt/iipsrv/tree/master/imagescripts

This script has been later converted into Python for the production ETL setup. This code has not yet been
released to the public as it is part of the larger GCIS ETL framework.

°LONG thread between D. Beaudet and the VIPS maintainer: https://github.com/libvips/libvips/issues/659

Copyright 2019 J. Paul Getty Trust. Licensed under a "CC BY 4.0" license. 42

https://image-processing.readthedocs.io/en/latest/jp2_profile.html
https://docs.google.com/document/d/1vm4MhRQdANiNre48vmAMwj0lPm-6LFfFnnS9qwzXDDo/edit
https://github.com/NationalGalleryOfArt/iipsrv/tree/master/imagescripts
https://github.com/libvips/libvips/issues/659
https://creativecommons.org/licenses/by/4.0/

Getty Common Image Service January-June 2019

6 Appendix 2: Locust Test Data

The following tables are raw data dumps from the Locust load testing sessions. The column names have

been abbreviated for compactness as follows:

src min: Minimum size (in megapixels) of random source image selected.
src max: Maximum size (in megapixels) of random source image selected.
derv sz: Derivative size in its longer dimension.

req: Number of total requests completed successfully within the 10 minute time frame of the
test.

fail: Number of failed requests (4xx or 5xx HTTP codes).

median: Median response time.

avg: Average response time.

min: Miminum response time.

max: Maximum response time.

avg sz: Average response size.

req/s: Requests per second.

All timings are in milliseconds.

6.1 IIPImage With PTIFF

6.1.1 10 Connections

'srcmin’ ‘srcmax’ ’dervsz’ C#req’ ‘#fail’ ’median’ ‘avg’ ’‘'min’ 'max’ ‘avgsz’ ’req/s’
0 10 tile 1597 0 13 74 2 1418 42960 2.71
0 10 1024 646 0 69 124 15 1269 129884 1.10
0 10 128 1594 0 4 62 2 1321 3512 2.70
0 10 4096 174 0 320 350 76 1100 1373086 0.30
10 75 tile 2974 0 14 71 7 968 48083 5.04
10 75 1024 1261 0 71 124 10 1080 149341 2.14
10 75 128 3044 0 4 64 2 1397 3976 5.16
10 75 4096 310 0 520 577 124 1436 2211692 0.53

Copyright 2019 J. Paul Getty Trust. Licensed under a "CC BY 4.0" license. 43

https://creativecommons.org/licenses/by/4.0/

Getty Common Image Service January-June 2019

srcmin’ ’srcmax’ ’dervsz’ C#req’ #faill ’median’ ‘avg’ ’‘min’ ’max’ ’avgsz’ ’req/s’
75 - tile 11020 0 13 70 6 1296 35544 18.69
75 - 1024 4460 O 67 120 16 1030 162239 7.56
75 = 128 10744 O 4 59 2 1297 4011 18.22
75 - 4096 1059 0 550 581 170 1470 2375629 1.80
‘any’ ‘any’ ‘any’ 38883 0 13 94 2 1470 131169 65.94

6.1.2 100 Connections

'srcmin’ ’srcmax’ ’dervsz’ #req’ ‘’#faill ’'median’ ‘avg’ ’‘min’ ’‘max’ ‘avgsz’ ’req/s’
0 10 tile 5474 0 720 940 2 4588 46697 9.29
0 10 1024 2258 0 820 1033 21 4712 130108 3.83
0 10 128 5424 0 720 940 2 4702 3652 9.21
0 10 4096 582 0 1200 1386 130 4745 1439533 0.99
10 75 tile 7283 0 740 950 7 5031 47797 12.37
10 75 1024 2883 0 830 1031 22 4587 141058 4.89
10 75 128 7355 0 690 920 2 5187 3723 12.49
10 75 4096 723 0 1500 1626 271 5261 2178882 1.23
75 = tile 10102 O 710 933 7 5135 35709 17.15
75 - 1024 4061 0 820 1025 25 4743 159772 6.89
75 - 128 10030 O 700 922 2 5199 3973 17.03
75 - 4096 1023 0 1400 1645 319 4624 2280863 1.74
‘any’ ‘any’ ‘any’ 57198 0 770 975 2 5261 124956 97.11

6.1.3 1000 Connections

Copyright 2019 J. Paul Getty Trust. Licensed under a "CC BY 4.0" license. 44

https://creativecommons.org/licenses/by/4.0/

Getty Common Image Service

January-June 2019

'srcmin’ ’srcmax’ ’dervsz’ C#req’ ’#faill ’median’ ‘avg’ ’min’ ’max’ ’avgsz’ ’req/s’
0 10 tile 8172 0 8400 9551 3 27795 44181 13.87
0 10 1024 3341 0 8700 9700 32 27796 121848 5.67
0 10 128 8100 0 8600 9586 3 27711 3555 13.75
0 10 4096 778 0 8900 10131 180 27579 1394046 1.32
10 75 tile 7947 0 8600 9534 9 27914 48207 13.49
10 75 1024 3195 0 8400 9435 41 27931 147296 5.42
10 75 128 8076 0 8700 9629 2 27644 3814 13.71
10 75 4096 775 0 9500 10361 180 27399 2269113 1.32
75 = tile 8124 0 8600 9625 8 27784 33832 13.79
75 - 1024 3231 0 8500 9606 40 27845 159088 5.49
75 = 128 7968 0 8500 9557 2 27901 3970 13.53
75 - 4096 781 0 9200 10343 667 27930 2306549 1.33
‘any’ ‘any’ ‘any’ 60488 0 8600 9608 2 27931 118147 102.70
6.2 lIPImage With JP2

6.2.1 10 Connections

'srcmin’ ’srcmax’ ’dervsz’ #req’ ‘#fail’ ’median’ ‘avg’ ’'min’ ’max’ ’avgsz’ ’req/s’
0 10 tile 505 0 41 331 1 5737 39663 0.86

0 10 1024 193 0 250 528 36 6036 117326 0.33

0 10 128 555 0 25 382 5 5570 3313 0.94

0 10 4096 52 0 380 678 41 8301 919556 0.09
10 75 tile 2794 0 39 352 10 7912 42832 4.74
10 75 1024 1103 0 410 652 105 5932 145871 1.87
10 75 128 2848 0 31 362 7 8961 3758 4.83
Copyright 2019 J. Paul Getty Trust. Licensed under a "CC BY 4.0" license. 45

https://creativecommons.org/licenses/by/4.0/

Getty Common Image Service

January-June 2019

'srcmin’ ’srcmax’ ’dervsz’ #req’ ‘#faill ’median’ ‘avg’ ’min’ ’‘max’ ‘avgsz’ ’req/s’
10 75 4096 260 0 1300 1607 406 9392 2144182 0.44
75 - tile 1294 0 39 278 5 5659 33866 2.20
75 - 1024 531 0 520 762 243 6792 145734 0.90
75 - 128 1330 O 34 302 16 8059 3815 2.26
75 - 4096 137 0 2800 3065 1288 8377 2295748 0.23
‘any’ ‘any ‘any’ 11602 0 55 453 1 9392 119108 19.69
6.2.2 100 Connections

'srcmin’ ’srcmax’ ’dervsz’ #req’ ‘’#faill ’'median’ ‘avg’ ’‘min’ ’‘max’ ’avgsz’ ’req/s’
0 10 tile 2667 0 1700 2763 2 20143 41777 4.53

0 10 1024 1133 0 2100 3212 23 20256 117547 1.92

0 10 128 2667 0 1800 2869 4 20267 3478 4.53

0 10 4096 283 0 2500 3493 42 18249 997249 0.48
10 75 tile 2993 0 1800 2831 8 20211 41844 5.08
10 75 1024 1232 0 1900 3004 130 19020 136719 2.09
10 75 128 3071 0 1900 2924 10 19410 3700 5.21
10 75 4096 327 0 3400 4342 406 15026 1980039 0.56
75 - tile 1946 0 1700 2781 5 19695 30484 3.30
75 - 1024 885 0 2400 3497 327 20311 151847 1.50
75 - 128 2081 O 1800 2837 16 19714 3839 3.53
75 - 4096 199 0 5000 6176 1855 19963 2151621 0.34
‘any’ ‘any’ ‘any’ 19484 0 1900 2970 2 20311 108729 33.08
6.2.3 1000 Connections

Copyright 2019 J. Paul Getty Trust. Licensed under a "CC BY 4.0" license. 46

https://creativecommons.org/licenses/by/4.0/

Getty Common Image Service

January-June 2019

srcmin’ ’srcmax’ ’dervsz’ C#req’ ’#faill’ ’median’ ‘’avg’ ’min’ ’‘max’ ‘avgsz’ req/s’
0 10 tile 2447 0 29000 29138 30 96348 40797 4.16
0 10 1024 1006 0 29000 29086 298 96476 122311 1.71
0 10 128 2443 0 30000 29535 7 102562 3460 4.15
0 10 4096 249 0 31000 30243 551 99699 958862 0.42
10 75 tile 2610 0 30000 29347 30 101547 41853 4.43
10 75 1024 1019 0 32000 30444 164 98518 138587 1.73
10 75 128 2661 0 30000 29533 17 99714 3791 4.52
10 75 4096 278 0 30000 29741 3147 66154 2136125 0.47
75 = tile 2610 0 29000 29514 21 102830 31116 4.43
75 - 1024 1076 0 31000 29619 436 99504 146086 1.83
75 = 128 2727 0 31000 29663 20 102842 3786 4.63
75 - 4096 290 0 33000 32406 4012 59935 2182745 0.49
‘any’ ‘any’ ‘any’ 19416 0 30000 29559 7 102842 113628 32.98
6.3 Cantaloupe

6.3.1 10 Connections

'srcmin’ ’srcmax’ ’dervsz’ #req’ ‘#fail’ ’median’ ‘avg’ ’'min’ ’max’ ’avgsz’ ’req/s’
0 10 tile 2079 126 150 156 14 482 37855 3.53

0 10 1024 902 0 440 440 67 1086 98985 1.53

0 10 128 2234 0 71 79 16 286 3017 3.79

0 10 4096 216 0 2700 2593 501 5047 1274085 0.37
10 75 tile 2480 0 150 153 31 434 37005 421
10 75 1024 974 0 570 589 155 1407 108094 1.65
10 75 128 2481 0 89 98 21 389 3219 421
Copyright 2019 J. Paul Getty Trust. Licensed under a "CC BY 4.0" license. 47

https://creativecommons.org/licenses/by/4.0/

Getty Common Image Service

January-June 2019

'srcmin’ ’srcmax’ ’dervsz’ #req’ ‘#faill ’median’ ‘avg’ ’min’ ’‘max’ ‘avgsz’ ’req/s’
10 75 4096 232 0 3500 3532 952 6485 1694282 0.39
75 = tile 1437 0 130 142 28 482 26471 2.44
75 - 1024 613 0 760 795 330 1960 131426 1.04
75 - 128 1493 0 140 151 35 499 3251 2.53
75 - 4096 134 0 4800 4844 1911 8781 1772782 0.23
‘any’ ‘any ‘any’ 15275 126 140 330 14 8781 92246 25.92
6.3.2 100 Connections

'srcmin’ ’srcmax’ ’dervsz’ #req’ ’#faill’ ’median’ ‘avg’ ’'min’ ’'max’ ’avgsz’ ’req/s’
0 10 tile 2224 135 2100 2161 97 6460 37623 3.77
0 10 1024 920 0 4200 4165 570 8275 95181 1.56
0 10 128 2453 0 1300 1434 35 4641 2817 4.16
0 10 4096 233 0 32000 29145 4356 47855 1110176 0.40
10 75 tile 2732 0 2100 2200 160 6028 36088 4.63
10 75 1024 1061 0 5100 5090 1720 9921 110177 1.80
10 75 128 2715 0 1600 1665 86 5195 3140 4.61
10 75 4096 237 0 38000 37170 9407 58394 1719273 0.40
75 - tile 1309 0 2100 2171 218 4843 27127 2.22
75 - 1024 549 0 6100 6230 2960 11104 127004 0.93
75 - 128 1361 0 2100 2193 229 6166 3236 231
75 - 4096 111 2 40000 39677 17361 59647 1645610 0.19
‘any’ ‘any’ ‘any’ 15905 137 2100 3605 35 59647 85546 26.98
6.3.3 1000 Connections

Copyright 2019 J. Paul Getty Trust. Licensed under a "CC BY 4.0" license. 48

https://creativecommons.org/licenses/by/4.0/

Getty Common Image Service

January-June 2019

srcmin’ ’srcmax’ ’dervsz’ C#req’ ‘#faill’ ’median’ ‘avg’ ’‘min’ ’max’ ‘avgsz’ ’req/s’
0 10 tile 1804 240 37000 35236 2214 59561 39718 3.06
0 10 1024 733 65 40000 38536 8021 60352 94972 1.24
0 10 128 1887 164 35000 34279 4191 60246 2858 3.20
0 10 4096 33 182 52000 49261 27089 63969 784414 0.06
10 75 tile 1951 177 37000 36019 6396 60325 39954 3.31
10 75 1024 763 92 41000 39665 8866 61172 112984 1.30
10 75 128 1946 183 35000 34063 3893 58706 3175 3.31
10 75 4096 15 212 52000 49162 15411 61793 1198679 0.03
75 = tile 1793 166 37000 35616 5143 62728 28640 3.05
75 - 1024 701 94 42000 40405 9708 60055 126595 1.19
75 = 128 1916 162 36000 35219 2672 60437 3296 3.25
75 - 4096 14 163 55000 52021 37471 60095 884227 0.02
‘any’ ‘any’ ‘any’ 13556 1900 37000 35857 2214 63969 38334 23.02
6.4 Loris

6.4.1 10 Connections

'srcmin’ ’srcmax’ ’dervsz’ C#req’ ‘#fail’ ’median’ ‘avg’ ’‘min’ ’‘max’ ‘avgsz’ req/s’
0 10 tile 550 16 97 1849 30 180135 65494 0.95

0 10 1024 202 0 240 1272 5 60368 167608 0.35

0 10 128 517 0 38 2123 4 240225 4359 0.89

0 10 4096 49 0 1300 3730 52 61115 2487976 0.08
10 75 tile 387 0 78 2015 30 120068 59852 0.67
10 75 1024 158 0 220 1863 6 120141 186397 0.27
10 75 128 417 0 26 1201 5 60059 4649 0.72
Copyright 2019 J. Paul Getty Trust. Licensed under a "CC BY 4.0" license. 49

https://creativecommons.org/licenses/by/4.0/

Getty Common Image Service

January-June 2019

'srcmin’ ’srcmax’ ’dervsz’ #req’ ’#faill ’median’ ‘avg’ ’min’ ’‘max’ ‘avgsz ’req/s’
10 75 4096 35 0 1600 1537 25 2740 2706144 0.06
75 - tile 203 0 73 2593 27 120077 42786 0.35
75 - 1024 98 0 240 346 6 1927 182812 0.17
75 - 128 208 0 20 1926 5 60104 4286 0.36
75 - 4096 20 0 2800 3032 52 6088 2906305 0.03
‘any’ ‘any’ ‘any’ 2844 16 74 1830 4 240225 150819 4.89
6.4.2 100 Connections

'srcmin’ ’srcmax’ ’dervsz’ ‘#req’ ’#faill ’median’ ’avg’ ’'min’ ’max’ ‘avgsz’ ’req/s’
0 10 tile 235 21538 3000 9303 30 123334 58815 1.14
0 10 1024 99 8630 2400 12410 8 123463 147956 0.48
0 10 128 257 21274 2100 8997 5 182996 3972 1.25
0 10 4096 28 2064 3000 13620 56 63701 2104843 0.14
10 75 tile 283 26486 2200 10938 35 182370 52113 1.38
10 75 1024 145 10475 2300 9063 7 68471 176495 0.71
10 75 128 295 26726 1900 9540 5 181271 4328 1.43
10 75 4096 40 2710 4700 17462 126 126689 3337957 0.19
75 - tile 130 10118 2300 13024 32 123541 39710 0.63
75 - 1024 40 3967 2500 8743 51 123341 181216 0.19
75 - 128 130 9912 1900 11215 6 123242 4481 0.63
75 - 4096 15 1020 3800 8411 960 61979 2583322 0.07
‘any’ ‘any’ ‘any’ 1697 144920 2300 10405 5 182996 185801 8.25
Copyright 2019 J. Paul Getty Trust. Licensed under a "CC BY 4.0" license. 50

https://creativecommons.org/licenses/by/4.0/

	Introduction
	Scope and Purpose
	Project Description
	Preexisting Status
	Key Requirements

	Architectural Components
	Image Formats and Encoding
	Pyramidal TIFF
	JPEG 2000

	Image Processors
	JP2 Processors
	Pyramidal TIFF Processors

	Image Server
	Selected for Benchmark
	Reviewed But Discarded
	Not Reviewed
	Information Sources

	Gateway Service
	Image API versioning
	Caching
	Derivative Cache
	Web Front End & Load Balancing

	Manifest Service
	ETL And Migration
	ETL Framework
	Migration Scripts

	Storage Technology and Vendors

	Benchmarks
	Image Formats & Encoding
	Test Sources and Setup
	Test Results

	Image Servers
	Reference Data Set
	Load Test Servers
	Benchmark Parameters
	Test Instruments and Methodology
	Test Result Summary

	Conclusions
	Appendix 1: Recipes
	JP2 encoding parameters
	Source Image Generation

	Appendix 2: Locust Test Data
	IIPImage With PTIFF
	10 Connections
	100 Connections
	1000 Connections

	IIPImage With JP2
	10 Connections
	100 Connections
	1000 Connections

	Cantaloupe
	10 Connections
	100 Connections
	1000 Connections

	Loris
	10 Connections
	100 Connections

