TECHNICAL ANALYSIS OF RENAISSANCE BRONZES FOR PROVENANCE STUDIES:

PILOT PROJECT

BY

BILLIE MILAM CHANDRA REEDY CAROL SUSSMAN

AUGUST 1988

TABLE OF CONTENTS

INTRODUCTION. 1
MATERIALS AND METHODS 4
STATISTICAL PROCEDURES 8
RESULTS 12
FUTURE WORK. 24
CONCLUSION 26
REFERENCES 27
APPENDICES

1. Sculptures Examined 28
2. Casting and Decorating Features: Definitions. 32
3. Casting and Decorating Features: Data Form 43
4. Petrographic Data: Definitions. 46
5. Petrographic Data: Form 50
6. Key to the Data Table 53
7. Data Table 67

INTRODUCTION

Using traditional art historical methods in the study of Renaissance bronze sculptures, it is difficult to make reliable attributions to specific artist, to date the sculptures or even to establish a region of origin. With little historical documentation available, attributions for most sculptures fall along a continuum from very uncertain to relatively certain. This situation is not unique to Renaissance bronzes. In order to address this problem, museum laboratories have in the recent past developed programs of technical studies of art objects aimed at contributing to provenance determinations. Examples are long-term studies of Chinese bronzes (Bagley 1987) and of Sasanian silver (Harper and Meyers 1981). These and other studies serve as examples demonstrating the usefulness of combining technical examination with stylistic studies.

Renaissance bronzes have as yet not been subjected to such comprehensive examinations although technical studies have been carried out at the Victoria and Albert Museum, the Metropolitan Museum and the National Gallery. For example, the work at the Metropolitan Museum has produced especially interesting results (Stone 1982). It is therefore highly likely that a comprehensive long-term project of technical studies of Renaissance bronze sculptures will provide significant results and will considerably enhance our understanding of the production of Renaissance bronzes by establishing relationships between artists, workshops, regional developments and dates.

This pilot project was initiated to investigate whether or not technical data, when combined with art historical information, can contribute to provenance determinations of Renaissance sculptures and to establish the possible extent of such contributions. It is intended to be the first stage of a long-term technical program. The basic research design follows that of a similar project with Himalayan bronzes, in which technical studies proved to be extremely useful in identifying a probable region of manufacture (Reedy and Meyers 1987).

Well documented sculptures were made available to us for study by courtesy of the Kunsthistoriches Museum, Vienna during an exhibition at the Los Angeles County Museum of

Art entitled "Renaissance Master Bronzes", 1987. A majority of the pieces in this collection were made for the Hapsburg Kunstkammer or known collectors, and have some historical documentation. This group of bronzes was supplemented by pieces from the Getty Museum. To be comprehensive and as accurate as possible in its conclusions, it is essential that this project be expanded to include other Renaissance bronze collections.

The project began with visual examination of sculptures, noting the surface and structural characteristics for determining the fabrication technique. This study of casting and decorating methods was supplemented with X-ray radiography. When possible, samples of clay core materials were removed for a mineralogical analysis by thin section petrography. A stepwise discriminant analysis was used to interpret these datasets in relation to art historical attributions.

Some metal samples have also been taken for future analysis by atomic absorption spectrometry when the equipment becomes available to the Getty Conservation Institute. The alloy composition of some of the sculptures was determined by energy-dispersive X-ray fluorescence analysis. However, the metal compositions have as yet not been included in this pilot study.

In this report we review the current status of the project at the end of its first year: what has been completed thus far, what results have been obtained, and in what direction we believe the project should continue.

Personnel

Ms. Billie Milam, Associate Conservator of Sculpture at the J. Paul Getty Museum, is the project coordinator. Dr. Chandra Reedy, Associate Research Scientist at the Los Angeles County Museum of Art, is in charge of the mineralogical and statistical analyses. Ms. Carol Sussman, assistant for the project, worked with Ms. Milam on the study of casting and
decorating methods, coded and entered those data for the statistical work, and is in charge of data management.

Dr. Reedy and Ms. Milam developed a working check sheet (see Appendix 3) of variables to record which combined art historical information with casting and decorating characteristics. Decisions about which characteristics to use were initially based on those features that proved useful in the Himalayan project that served as a model for this study, but were then tailored specifically to the casting and decorating features found on Renaissance bronzes. Refining of the check sheets and description of the categories used on them (see Appendix 2), and subsequently determining how the features of each sculpture should be recorded in accordance with those forms, was done after extensive examination of each piece by Ms. Milam with the aid of Ms. Sussman. Ms. Sussman coded the casting variables into numerical form and entered that data into a computer in a format suitable for statistical analysis. The X-ray radiography was undertaken by Ms. Milam and Dr. Pieter Meyers at LACMA, and by Ms. Milam and Richardson X-ray Company at the Getty Museum with a portable X-ray tube. The casting core samples were taken by Ms. Milam, mounted by Quality Thin Sections, and analyzed through thin section petrography by Dr. Reedy. Dr. Chandra Reedy, in consultation with Dr. Terry Reedy, completed the multivariate statistical analysis of all datasets. Metal samples were taken by Ms. Milam for future analysis by atomic absorption spectrometry by Dr. David Scott of the Getty Conservation Institute. Alloy analysis by X-ray fluorescence was carried out on polished areas of some of the bronzes by Mr. Michael Schilling. Dr. Frank Preusser (GCI) has gathered together published material on metal analyses of Renaissance bronzes, which he has entered into a computer at GCI for inclusion in the project at a later date.

MATERIALS AND METHODS

Sculptures Selected for Analysis

A total of 64 sculptures from the exhibition entitled "Renaissance Master Bronzes" from the Kunsthistoriches Museum in Vienna (Leithe-Jasper 1986) were analyzed. The sculptures were examined and sampled during the installation of the exhibition at the Los Angeles County Museum of Art; during the deinstallation they were examined again and X-ray radiography was carried out. Time constraints precluded the full recording of data from all objects in the exhibition, and we therefore have some missing data for casting and decorating techniques which should be completed.

A total of 39 objects from the J. Paul Getty Museum permanent collection and loan sculptures were also analyzed with owner approval (as well as one piece from the Museum of Fine Arts, Houston that was made available to us by LACMA with approval from MFA). Some of these objects have a relatively plausible provenance, others are more uncertain, with alternate regional and chronological attributions possible. It is expected that their inclusion in this long-term study will eventually provide support for a more accurate attribution. At this time, examination of specific attributions is not possible because we have analyzed too few sculptures at this stage of the project. Additionally, some of the casting and decorating entries are not yet complete for this group.

A list of all sculptures thus far included in the study and their identification numbers used in the data table is given in Appendix 1.

Art Historical Data

Art historical attributions concerning the possible region of production, artist, and date of manufacture were collected through discussions with Dr. Manfred Leithe-Jasper, Dr. Peter Fusco and Prof. Carlo Pedretti. (It is suggested that Dr. Peter Mellor, another art historian, can also
be consulted on attributions as the project continues.) Although information is absolutely certain in only a few cases, constructing at least plausible hypotheses concerning attribution was necessary to organize the sculptures for statistical analysis of the data. The attributions chosen remain open to re-examination as the project progresses. In some cases the attribution that can be hypothesized is more exact (e.g., Milan) than in other cases (e.g., Italy). In all cases the most exact attribution possible was given, although for purposes of statistical analysis some categories were later combined. The art historical categories recorded are listed in the key to the dataset (Appendix 6). At this stage of the project these categories are not realistic and had to be combined into more general groups, as we are restricted by the small number of objects.

Casting and Decorating Techniques

The casting and decorating technology employed in sculpture production involves many steps, with alternative choices of methods available at every step. It is possible that patterns of similar techniques may exist that are related to region of production, artists workshops, or date of manufacture. To determine variations in casting and decorating technology, the combination of surface examination and X-ray radiography was used to record a total of 86 different features.

A few of these features are arithmetic variables (e.g., height, width, depth); most are categorical. In some cases only presence or absence of a feature was recorded (e.g., threaded chaplets, pins located in cracks, and casting in separate pieces that were joined in the metal). In other cases several choices were available within a particular category (e.g., thickness of the metal of a hollow casting piece is thin, average or thick).

The 86 features recorded can be very generally categorized as pertaining to (1) the structure of the piece, (2) the treatment of repairs of casting flaws, (3) the construction of the core and degree of hollowness of the piece, (4) decoration and finishing, and (5) the patina.

All of the features recorded are listed and defined in Appendix 2. When the numbers of occurrences of each feature were tallied, we noted that many of these technical features are so infrequent that they occur extremely rarely, or never, in our groups of more plausible attribution, so at this stage cannot contribute to the provenance studies. Thus, as the project progresses, some categories may eventually be combined or eliminated.

The data were recorded with the aid of a form designed specifically for this project (see Appendix 3). Since two people worked to record the features, testing for consistency and repeatability was possible. Although other analysts may have selected a somewhat different set of features to record, a set of definitions for all characteristics included (Appendix 2) was prepared so that other analysts should be able to identify those same features.

Clay Core Mineralogy

Samples of core material were available for 64 sculptures in the study. Analysis of this material was expected to be especially useful for regional and workshop characterizations, since core materials were most likely collected at the site of sculpture manufacture. Our hypothesis was that the mineralogical composition of clays from different geographic regions would very likely show considerably more variation between regions than within a single region. It is also possible that artists from different workshops and/or time periods would select materials of different composition or texture for constructing clay cores.

The loose-grained samples were mounted in Lakeside 70 on a glass slide by Quality Thin Sections of Tucson, Arizona. They ground the samples down to .03 mm thickness with silicon carbide powder, and cover glasses were mounted with Canada Balsam. This thin section preparation permits microscopic measurement of the optical properties of the minerals in the samples, thus allowing them to be identified by reference to standard tables of mineral optics (Kerr 1977; Deer, Howie and Zussman 1980).

Appendix 4 gives the full description of all mineral features recorded. The percentage of quartz present in each thin section was estimated by reference to models for visual estimation of percentage composition of rocks (Williams, Turner and Gilbert 1982:593-597). Other quartz features recorded were the most common size of the grains, degree of sorting, shape of the grains, and eight textural characteristics.

Organic matter appears in both uncarbonized and carbonized forms. The percentage present and the overall size for each were determined. Carbonates, when present, were categorized as rare, abundant, or very abundant, and the most common size was recorded. If rounded edges or rhombic shapes were present, these were noted. The presence of possible dolomite or siderite were also noted. After the final totals of occurrences in each category had been determined, the carbonate categories were collapsed for statistical analysis into only the degree of abundance and the size.

Hematite, if present, was recorded as rare, abundant, or very abundant. The presence of plagioclase feldspar was originally recorded along with its approximate percentage. The percentage of alkali feldspars were also recorded, broken down into microcline or orthoclase categories. For the statistical analysis, however, only presence or absence of the three feldspar types was used.

For micas, presence or absence was recorded for muscovite, biotite and chlorite. If clinopyroxenes or orthopyroxenes were present, the type was determined whenever possible. Amphiboles were divided into either hornblende or other. Lithic fragments were primarily metamorphic or volcanic, but some sedimentary and plutonic lithics were also seen.

In addition, presence or absence was recorded for the following minerals: epidote, clinozoisite, apatite, zircon, rutile, spinel, tourmaline, garnet, glauconite, gypsum, serpentine and olivine. The remainder of the casting core consists of clay minerals of one type or a mixture of types. These cannot be further identified in thin section.

The form used to record petrographic data for this project is shown in Appendix 5. The
categories included on the form represent those minerals and mineral textures actually encountered when working with Renaissance bronze core materials.

STATISTICAL PROCEDURES

Descriptive statistics were first obtained for each variable (using the BMDP program 1D, Dixon 1985:74-79). For each arithmetic variable, these are the number of valid values, mean, standard deviation, and extreme values. For categorical variables, the number of sculptures (frequency) in each category was counted. Aside from their own interest, these summaries help check data entry and plan further analyses. The pattern of missing values limits the analyses that can be done. Also, technical features which occur infrequently are unlikely to be discriminating since they may never occur in the plausible groups, or if they do they will be so rare that they will not be useful in characterizing the group as a whole. It is then worthwhile considering whether, for purposes of the statistical analysis, they should be ignored or combined with other variables.

The primary statistical procedure used to interpret the datasets was stepwise discriminant analysis (BMDP 7M, Dixon 1985:519-537). This procedure starts with groups formed by art historical criteria (region, artist, or time period), using only those objects that are relatively more certain (plausible). The major problem addressed so far was whether or not it is possible to discriminate between the groups using technical variables. Later, when more sculptures have been analyzed for each group, we will determine if the sculptures of stylistically more uncertain provenance can be assigned to any of those groups based on the discriminating technical criteria.

The primary objective of a stepwise discriminant analysis is to identify a minimal group of variables that gives maximal discriminating power. These variables are combined to construct a set of classification functions, one for each group. When these functions are applied to a
specific object they give a score for its relative similarity to the central tendency of each of the groups. An object is then classified into the group for which it has the highest similarity score. When applied to objects in the "known" (relatively plausible attribution) groups, the percentage of objects correctly classified measures the performance of the classification functions.

In classical applications of discriminant analysis the objects in the known groups are assumed to be correctly classified. In this study, as is frequently the case in art historical research, the attributions were merely plausible, and not definitely known. Therefore, as the project progresses and more sculptures and data become available, we will re-examine how well the initial art historical attributions assigned to the sculptures in the plausible groups compare to the mathematical classifications arrived at through the discriminant analyses with various datasets (casting and decorating, core materials, metals).

Some variables that might be individually significant may not appear discriminating when many variables are included in the analysis. This is because variables that are highly correlated with each other are partially redundant. Extraneous variables that add nothing additional to the discrimination are left out because they detract from the performance of the classification functions when applied to new, uncertain, objects.

A total of 11 discriminant analyses were carried out. The groups used for analysis were formed in consultation with the art historians and curators previously mentioned. However, we were limited in the manner in which we could construct groups for analysis by the fact that the dataset is still very small. For statistically significant results we would prefer to have a minimum of 20 objects in each group. When group sizes are very small, artificially high classification success can result. For that reason, most of the results of this preliminary phase of the project must be considered as indications of the degree of success we can expect when larger numbers of sculptures are analyzed, and not considered to be final results.

The regional groups used for discriminant analysis are as follows:

1. Italy (Italy + North Italy + Padua + Milan + Mantua + South Italy + Florence + Venice) [66 objects] versus all other groups [33 objects];
2. Venice + Germany [13 objects] versus all other Italy [58 objects] versus all others [28 objects];
3. North Italy (North Italy + Padua + Milan + Mantua) [36 objects] versus Venice + Florence [16 objects].

Chronological periods were divided as follows for the analysis:

1. Early (1450-1525 A.D.) [24 objects];
2. Middle (1525-1600 A.D.) [34 objects];
3. Late (later than 1600 A.D.) [20 objects].

The art historical suggestion was that we use four date ranges, with 1500-1525 A.D. being a separate category. However, we do not yet have enough objects of plausible date in that time range to permit a separate group to be analyzed at this time.

There are currently no artists of plausible attribution for which we have enough samples to analyze separately as a group (the attribution of a specific artist is uncertain for most of the sculptures). We therefore grouped the sculptures that can be plausibly attributed to a specific artist into three broad groups of artists who may have been working together or in contact with one another. With more input from art historians as the project progresses, alternative groupings can also be tested.

1. Group 1 - Jacopo Sansovino, Tiziano Minio, Alessandro Vittoria, Nicolo Roccatagliata, Campagna [10 objects];
2. Group 2 - Tiziano Aspetti, Giambologna, Antonia Susini, Adrien de Vries [9 objects];
3. Group 3 - Antico, Bertoldo di Giovanni, Johann Gragor van der Schardt, Kaspar Gras, Gerhard, de Keyser, Cellini, Francesco Bertos, Giovanni Foggini, Palma, F.B., Girardon [18 objects]. (This group is composed of all others not in the first two groups.)

As additional sculptures whose artist is relatively certain become available for technical study, we hope to be able to further divide these groupings down to individuals, or at least to very closely associated artists.

Because of the missing data, all of the above groupings were used for discriminant analyses using the casting and decorating data alone, and separately for analyses using the mineralogical data alone. At this point in the research the more uncertain objects were excluded, as the necessary first step is to determine how well (if at all) we can discriminate between these groups of more plausible attribution using the analyzed technical variables. With so many groups still of very small size, it would be premature to attempt to classify the stylistically uncertain objects at this stage in the project.

We tried one discriminant analysis (using the three time periods) with both the casting and decorating techniques and the mineral data combined. Since the number of objects that currently have both types of data available is smaller than the number of objects with either data set alone, it does not make sense to combine the datasets for any of the other discriminant analyses at this time, as the group sizes are just too small.

The exact set of features that form the discriminant function, as well as the degree of separation between groups, varies depending upon which groups are being compared and how many sculptures are included. A visual representation of the separation between groups is shown with plots whose axes can equivalently be denoted as "canonical variables", "discriminant
functions", or principal component axes". Regardless of the name used, the first axis is the direction of greatest separation between all of the group means (using a linear combination of the variables in the final classification function). The second axis is the perpendicular direction with the greatest remaining separation. The maximum number of axes which can be extracted by this means is the lesser of the number of discriminant variables and the number of groups minus one. Thus for cases where only two groups are being compared the full amount of separation that exists is plotted with a histogram, and a two-dimensional plot is used for three or more groups.

RESULTS

Casting and Decorating Features

Discriminant analysis requires a complete data matrix with no missing values. For the casting and decorating variables, there are many cases where we still have missing data, particularly where the sculptures in Vienna need to be re-examined, or where X-ray radiography has not yet been carried out. Variables that are currently missing for most objects were ignored for the statistical work. In addition, variables that through the descriptive statistics were found to have the same value for nearly all the sculptures were also eliminated. Sculptures currently missing the remaining variables were then dropped from the analysis, leaving 62 sculptures and 66 variables. When the data matrix is more complete, more objects and variables can be included.

The results of all of the discriminant analyses are summarized in Table 1. In this and the following result tables, "Number" refers to the number of sculptures plausibly attributed to the group listed. "Reassigned" refers to the number of those sculptures that were found to be more similar to the sculptures of a different group than they were to their own group. The percentage of objects "Correctly Classified" refers to the total number of sculptures of

TABLE 1
DISCRIMINANT ANALYSIS RESULTS, CASTING AND DECORATING FEATURES

| Groups | Number | Reassigned | Correct | |
| :--- | :---: | :---: | :---: | :--- | | Discriminating Variables |
| :--- |
| Regions: |

Time Periods:

Early	18	6	74%	Density of repairs
Middle	29	8		Silver inlaid eyes
Late	15	2		Hollowness, primary arms

Artist Groups:

1	6	0	100%	Hollow/solid base
2	7	0		Chipped patina
3	9	0		Hollowness, secondary arms
			Pins in cracks Distribution of porosity	

plausible attribution in that discriminant analysis whose technical features classify them into the same groups into which they were art historically classified. Thus on the first line of Table 1, out of 49 objects of plausible attribution (37 Italy, 12 Other), 6 were reassigned (2 labelled Italy were technically more similar to the Other group, and 4 in the Other group were more like the Italy sculptures). This leaves a total of 88% that could be correctly classified into their plausible attribution using the technical data. The closer to 100% correct classification, the better we will be able to later classify the art historically uncertain objects into one of the groups on the basis of technical data. The "Discriminant Variables" are those technical features which, when taken together, provide the maximum amount of discrimination possible between the groups being compared.

Regional Comparisons. When casting and decorating features are used to discriminate between Italy versus all other regional groups, a total of 88% of all sculptures are correctly classified. For this dataset, we start with 37 attributed to Italy and 12 attributed to the other regions. Two from Italy are found to be more like the "other" group, and thus reassigned to that group, and four from the "other" group are indistinguishable from Italy. Six variables form the discriminant function in this comparison. Figure 1 shows the histogram illustrating the separation between these two groups using a linear combination of the variables in the discriminant function.

When Venice and Germany were combined (for art historical reasons it was hypothesized that these two groups could be similar) and compared with all other sculptures from Italy, and with all other regional groups, only 76% were correctly classified. Out of 31 in the Italy group, 27 were correctly assigned to Italy. However, out of the 11 in the "other" group, 5 were called Italy; out of 7 in the Venice plus Germany group, only 4 could be distinguished as a separate group.

The best success came in the attempt to discriminate Venice plus Florence from other North Italian sculptures. A total of 100% of the sculptures were correctly classified (Figure 2).

- OTHER

HISTOGRAM OF CANONICAL VARIABLE

FIGURE 1
CASTING AND DECORATING TECHNIQUES

- VENICE + Florence
- other north italy

HISTOGRAM OF CANONICAL VARIABLE

FIGURE 2
CASTING ANI) IECORATING TECHNIQUES

- ARTIST GROUP 2

ARTIST GROUP 3

CANONICAL VARIABLE 1

FIGURE 3
CASTING AND DECORATING TECHNIQUES

However, it must be noted that we still have very small group sizes (9 Venice + Florence and 23 other North Italy). Ten variables entered into the discriminant function.

Chronological Comparisons. When the three date ranges were compared using this dataset alone, only 74% of the sculptures were correctly classified. Out of the 18 Early sculptures, 12 were correctly assigned, but 6 could not be distinguished from the Middle group. Of the 29 in the Middle group, 21 were correctly classified as Middle, with 2 called Early and 6 called Late. Of the 15 in the Late group, 13 were correctly called Late and 2 were called Middle. Thus there was no overlap between Early and Late, the only problem is that the Middle category grades into Early and Late with no clear line of distinction. The discriminant function is formed by four variables.

Artist Groups. When the three artist groups were compared, 100% were correctly classified (Figure 3). However, given the extremely small group sizes this result must be seen as only a preliminary indication that we will probably be able to separate related groups of artists by casting and decorating techniques. We currently have only 6 sculptures of plausible attribution to Group 1 artists, 7 to Group 2, and 9 to Group 3. Five variables formed the discriminant function.

Mineralogical Data

There were 64 sculptures in the project with core material available. For all 64 the full list of variables was recorded, leaving none with missing data. Therefore the complete set of 64 could be used. The results of all discriminant analyses are summarized in Table 2.

Regional Comparisons. For Italy versus all other groups, 89% of the sculptures were correctly classified (37 out of 39 for Italy, and 12 out of 16 for "others"). Six variables entered into the discriminant function.

For Venice plus Germany versus Italy versus all others, the Venice plus Germany "group" is nonexistent, as none in the category can be distinguished from the other two groups. This
leaves a total of only 62% correctly classified.
Again, the greatest success is in distinguishing between Venice plus Florence and the rest of North Italy (Figure 4). 100\% of the sculptures are correctly classified (23 for North Italy and 10 for Venice plus Florence). Seven variables entered into the discriminant function.

Chronological Comparisons. We would not expect the mineralogical data to prove useful in distinguishing between time periods, except to the extent that the different time periods represent differing regional emphases in numbers of sculptures produced. That hypothesis was borne out by these results -- only 60% of the 37 sculptures in the chronological groups could be correctly classified using minerals alone.

Artist Groups. 100% of the available sculptures were correctly classified (Figure 5). Thus it is possible that each of these groups of artists may have worked in the same general region or constructed their clay cores with a similar type of material in comparison to the other groups. Here our dataset is extremely small (only 4 sculptures of plausible attribution to the artists in Group 1, 5 in Group 2, and 7 in Group 3). These results are very preliminary, but do indicate that given enough samples of core material from sculptures for which the artist is relatively plausibly known, we may be able to classify sculptures to a group of related artists. If it were possible to find enough sculptures of each individual artist, we could then try to narrow the discrimination down even further.

Combination of Casting and Mineral Data

As an experiment to see if combining the two datasets results in improved discrimination, an analysis was done for the three date ranges. The results are summarized in Table 3. As mentioned above, with minerals alone we had 60% correct classification when comparing these groups, and with casting and decorating data alone, 74%. Combining the two datasets results in 94% correct classification (Figure 6). Because the number of objects in each group is drastically reduced when we require that both datasets be complete, these results are very

TABLE 2

DISCRIMINANT ANALYSIS RESULTS, MINERALOGICAL DATA

Groups	Number	Reassigned	Correct	Discriminating Variables
Regions:				
Italy	39	2	89\%	Carbon size
All other regions	16	4		Gypsum
				Authigenic quartz
				Plagioclase feldspar
				Spinel
				Orthoclase feldspar
Venice + Germany	8	8	62\%	Carbon size
Italy	35	12		
All other regions	12	,		
Venice + Florence	10	0	100\%	Quartz shape
Other North Italy	23	0		Microcrystalline quartz
				Fibrous quartz
				Carbonates
				Microcline feldspar
				Muscovite
				Apatite
				Rutile

Time Periods:

Early	13	4	60%	Polycrystalline quartz
Middle	21	12		Quartz size
Late	8	1		

TABLE 3 DISCRIMINANT ANALYSIS RESULTS, DATA COMBINATION

Groups \quad Number Reassigned Correct Discriminating Variables
Time Periods:

Early	10	0	94%	Scooping of core
Middle	19	1		Metallic flakes on patina
Late	5	1		Hollowness, primary legs
			Hole on top Bubbled patina 	
Repair of casting flaws				
Glauconite				

```
■ VENICE + Florence
```

- other north italy

HISTOGRAM OF CANONICAL VARIABLE

- ARTIST GROUP 1
- ARTIST GROUP 2
- ARTIST GROUP 3

CANONICAL VARIABLE I

FIGURE 5
MINERALOGICAL ANALYSIS

preliminary (all 10 in the Early group are correctly classified, 18 out of 19 in the Middle group are correct with 1 misclassified as Early, and 4 out of 5 in the Late group are correct with 1 misclassified as Middle). However, these results do indicate that whenever possible both types of data should be recorded, as combining them will probably improve our ability to discriminate between groups. This makes sense, since the more types of data we have to characterize a group the better we should be able to distinguish it from other groups. Six out of seven of the variables that form the discriminant function are from the casting dataset, and one mineral variable is included (glauconite, an iron-rich mineral that is of ten found with hematite).

FUTURE WORK

In order for this project to be definitive and useful in a practical way, it must be continued beyond the preliminary experiments that we have now completed. A long-term project is necessary to adequately collect the data necessary for reliable results, and to confidently attempt to classify uncertain objects. As part of that expanded research we will need greater input from people in the various disciplines involved: art historians, conservators and scientists.

The next logical step in the project is to complete the X-ray radiography and sampling of core materials and metals. In addition, Ms. Milam and Ms. Sussman need to re-examine the sculptures in the Kunsthistorisches Museum and the Getty Museum that currently have incomplete data sheets. When these missing data are added, we will be able to add to and improve on the statistical work.

Data on metal compositions have not yet been included in the project. We do not know how much those data may improve our ability to discriminate between art historically-defined groups. However, it is probable that when combined with the other datasets in a multivariate statistical analysis, metal compositions may contribute to provenance identifications. We
therefore hope to work with the scientists from the Getty Museum and Getty Conservation Institute to add these data in the future. It would be most useful if the first metal data collected were for objects already included in the project. Some metal samples from the Kunsthistorisches Museum were removed at the National Gallery in Washington D.C. following their exhibition there, under the supervision of Gary Carriveau. The analytical results, or the samples themselves, need to be obtained so we can incorporate them into the project.

As part of a long-term study, the next step after filling in the missing data for our current group of sculptures will be to include objects from other museums with major collections of Renaissance bronzes. Objects should be chosen by art historians and curators to fill out the dataset in such a way that we can more effectively test specific hypotheses in the statistical analysis. For example, we wish to obtain data for as many sculptures as possible that have a more certain attribution for region, date, and/or artist. Also, we should to expand the group categories that are currently extremely small, such as objects from Germany and France.

It has also been suggested that we create a computerized database to store, organize and retrieve the data that the we have collected, and make it available to other scholars. The database would permit quick retrieval of the information and observations that have been recorded, in any configuration. For example, one could extract all the mineralogical data for the sculptures with a "more certain" attribution to Mantua, then for all the sculptures that were possibly from Mantua. The database could be entered with DBase III (currently in use by Mr. Ben Kessler and Dr. Laurie Fusco at the Getty Museum for art historical data collected by the slide library and the education department). By using the same system and their abbreviations, we could plan to combine our scientific, conservation and art historical data with other information. This would increase the information on Renaissance bronzes accessible to scholars working in the field.

In order to obtain reliable results we need approximately 20 sculptures for each group included in the statistical analysis. We therefore need to expand our corpus of objects. The more pieces included the narrower the groupings we can examine. Ideally, we hope to continue this project over a long enough time period to permit us focus on discriminating between specific workshops and cities, rather than the more general workshop groups and larger regions thus far examined. It is our opinion that a long-term commitment (three to five years) to the project is necessary to achieve this goal.

CONCLUSION

Because of the currently small group sizes, these results must be considered preliminary, and we cannot yet attempt to classify the uncertain objects. However, the results obtained thus far indicate that there is a strong potential for technical studies to contribute to provence identifications of these sculptures. With the difficult art historical issues involved, and the controversy and uncertainty in many attributions, bringing in additional data from technical analyses could be an important contribution to provenance studies of Renaissance bronzes.

REFERENCES

Bagley, R.W.
1987 Shang Ritual Bronzes in the Arthur M. Sackler Collections. Cambridge: Harvard University Press.
Deer, W.A., R.A. Howie and J. Zussman
1980 An Introduction to the Rock-Forming Minerals. London: Longman.
Dixon, W.J. (ed.)
1985 BMDP Statistical Software. Berkeley: University of California Press.
Harper, P. and P. Meyers
1981 Silver Vessels of the Sasanian Period. Vol 1. Royal Imagery. New York: Metropolitan Museum of Art.
Keer, P.F.
1977 Optical Mineralogy. New York: McGraw-Hill.
Leithe-Jasper, M.
1986 Renaissance Master Bronzes from the Collection of the Kusthistorisches Museum. Vienna. Washington D.C.: Scala Books.
Pettijohn, F.J.
1975 Sedimentary Rocks. New York: Harper and Row.
Reedy, C.L. and P. Meyers
1987 An interdisciplinary method for employing technical data to determine regional provenance of copper alloy statues. In Recent Advances in the Conservation and Analysis of Artifacts, compiled by J. Black:173-178. London: Summer Schools Press.
Stone, R.S.
1982 Antico and the development of bronze casting in Italy at the end of the Quattrocento. Metropolitan Museum Journal 16:87-116.
Williams, H., F.J. Turner and C.M. Gilbert
1982 Petrography: An Introduction to the Study of Rocks in Thin Section. San Francisco: W.H. Freeman.

APPENDIX 1

SCULPTURES EXAMINED

Kunsthistoriches Museum pieces are denoted " K " followed by their catalog number in the exhibition catalog, Renaissance Master Bronzes.

data number	sculpture	artist/region if unknown
K02	Bellerophon taming Pegasus	Bertoldo di Giovanni
K07	Jupiter	North Italy
K08	Venus felix	Antico
K09	Hercules and Antaeus	Antico
K11	Standing Hercules	North Italy
K12	Venus of Cardinal Granvella	North Italy
K13	Seated female panther	North Italy
K14	Ambling horse	North Italy
K15	Bull	North Italy
K16	Crab	North Italy
K17	Toad	North Italy
K18	Armored horseman	North Italy
K19	Seated bacchante with wreath	North Italy
K22	Marsyas	North Italy
K23	Warrior	North Italy
K32	Fat man	Unknown
K33	Venus	North Italy
K35	Negro Venus	Unknown
K36	Hercules or Cain	Florence
K37	Satyr	Italy
K38	Pegasus	North Italy
K39	Crouching gladiator I	North Italy
K40	Crouching gladiator II	Prague
K41	Barbarian on horseback	Milan
K42	Jupiter	Jacopo Sansovino
K43	Neptune in his chariot	Tiziano Minio
K44	Allegory of winter or A philosopher	Alessandro Vittoria
K45	Venus Marina	Tiziano Aspetti
K46	Adam and Eve	Nicolo Roccatagliata
K47	Putto with drum and flute	Nicolo Roccatagliata

data number	sculpture	artist/region if unknown	
K48		Putto playing the flute	Nicolo Roccatagliata
K49	Mercury	Johann Gregor van der Schardt	
K50	Venus Urania	Giambologna	
K51	Flying Mercury	Giambologna	
K52	The centaur Nessus		
	abducting Deianira	Antonio Susini	
K54	Christ at the column	Adriaen de Vries	
K57	Crane	Unknown	
K58	Lion attacking a bull	Antonio Susini	
K59	Putto riding a dolphin	Unknown	
K60	Chronos -- Saturn	Italy	
K61	Greyhound	Unknown	
K63	Standing putto	North Italy	
K64	Pacing horse	Unknown	
K66	Emperor Ferdinand III		
	on horseback	Caspar Gras	
K67	Mercury and Psyche	Caspar Gras	
K68	Warbler	Florence	
K69	Nereid	Netherlands	
K70	Triton with a fish	Unknown	
K71	Two horses gamboling	Hubert Gerhard	
K72	Mars, Venus and Cupid	Hubert Gerhard	
K73	River-god	Unknown	
K74	St. Jerome	Unknown	
K75	Venus or Amphitrite	Netherlands	

J.Paul Getty Museum pieces are assigned data numbers as follows:

data number	museum \#	sculpture	artist/region
	74.SB.16	Venus Marina	France
G02	74. PB.17	Rape of Proserpine by Pluto	France
G03	74. PB.18	Rape of Orithyia by Boreas	France
G04	84. SB.90	A Warrior on Horseback	de Keyser
G05	85. SB.60	Venus	Italy
G06	85. SB.61	Prancing bull	Padua
G07	85. SB.66	Venus chastising Cupid	Italy

data number	museum \#	sculpture	artist/region
G08	85.SB. 68	Female Virtue or Allegory	Venice
G09	85.SB. 69	Satyr	Cellini
G10	85.SB. 72	Kicking horse	Caspar Gras
G11	85.SB.73.1	Stupidity and Fortune	Francesco Bertos
G12	85.SB.73.2	Industry and Virtue	Francesco Bertos
G13	85.SB. 74	Eleven figures	Francesco Bertos
G14	85.SB. 75	Mars and Venus	Flemish
G15	85.SB. 184	Mercury	Allesandro Vittoria
G16	85.SB. 413	Laocoon	Giovanni Foggini
G17	85.SB.418.1\&.2	Two Sphinxes	Italy
G18	L.86.SB. 55	St. Stephen	Nicolo Roccatagliata
G19	L.86.SB. 134	San Giorgio	Nicolo Roccatagliata
G20	L.86.SB. 143	Jupiter	Palma
G21	L.86.SB. 144	Francoflemish Venus	Unknown
G22	86.SB. 488	Rearing Horse	Adrien de Vries
G23	86.SB. 688	Bust of a Young Man	Antico
G24	86.SB. 734	Putto or Infant Christ	Campagna
G25	87.SB. 50	Venus with Cupid and dolphin F.B.	
G26	$\begin{gathered} \text { L.88.SB. } 39.1 \\ \text { (88.SB.73) } \end{gathered}$	Rape of Orthiyia by Boreas	Marsy
G27	$\begin{gathered} \text { L.88.SB. } 39.2 \\ (88 . S B .74) \end{gathered}$	Rape of Proserpine by Pluto	Girardon
G28	44.5.86	Virgin and Child (from Museum of Fine Arts,Houst	Susini on)
G29	$\begin{aligned} & 74.560 \mathrm{C} \\ & (49.26 .2) \end{aligned}$	Palissey (ceramic) from Los Angele Museum of Art	s County
G30	L.83.SB. 20	Andromeda (French)	Robert LeLorrian
G31	85.SB. 63	Kneeling Satyr	Riccio
G32	85.SB. 67	Triton	Unknown
G33	85.SE. 55	romanesque aquamanile ca. 1220 Hildesheim or Magdeb	Lower Saxony urg
G34	86.SB.5.1	Dog	Germany
G35	86.SB.5.2	Bear	Germany
G36	L.87.DE. 98	Palissey basin (ceramic)	
G37	87.SB. 50	F.B. Venus Same as \#25	
G38	L.87.SB. 102	Hercules and Hydra	Giambologna
G39	L.87.SC. 101		
	(88.SC.42)	Bust of Mme Recamier (ceramic) Chinard	

APPENDIX 2

CASTING AND DECORATING FEATURES: DEFINITION

```
Certainty of Regional Attribution:
certain - a known fact as to where worksnoo was located (not
    necessarily where the artist was from)
Hncertain - there are several choices where the workshoo could
    have been located
Certainty of Attributed Artist:
certain - artist sigred bronze with verified signature or there
    is strong historical or art historical evidence proving that
    the work can be attribsted to a oarticular artist
uncertain - art historical nor historical evidence cannot
    reasonably prove an attribution to a certain artist
Certainty of attributed date: (date ranoe 50 years: examole 1450
    would indicate 14ES-1475)
certain - dated or documented,scholars agree on date
    stylistically, there is art historical and historical
    *videmee tnat linme the seuloture to an attributed date
uncertain - scholars disagree or are unsure of date
fake - examination nas oroven the sculpture to be of a much
    later date of fabrication and it was made in a style to
    deceive
```

Data Available:

```
visual examination - object available for examination in lao
    or formeriy viewed in the lab and adeouate notes were taken
x-ray radiograoh - available for examination
XRF - taken from polished area
metal sample - taken fir future use for atomic absorotion
core sample for TL - test was run
core sample for thin section - core sample mounted and read for
        mineral characterization
```

Amother similar imaoe exists (multiole castings possible) scholar refers to a similar imade which possibly could have come from the same moid or it is a reoccurring image from the period

Structure:

```
Number of separately cast pieces:
One - apoears to ariginally be cast in one oiece
more than one - aooears to have been originally cast in more than
    one piece, or urisure if reoaired or original attachment
    removable oarts oreserit - parts which can be slid or
    threaded into or out of oosition
How seoarately cast oieces are attached:
cast on - Dart of the oiece is cast and attached to mold before
    the rest of the object is cast
Brazirg - or welded with a alloy with a hioh melting point
Soldering - attached with a low melting alloy
Pins - attached with a dowel within the oiece
Rivets - a oin which reaches the surface and the end is exoanded
Screws - threaded rivets
Sleeve - the overlaooing of two hollow parts, in which one is
        slightly smaller in diameter and fits inside the larger
Hooo (interior) - an interior ring of metal attaching two hollow
        parts
Size of Chaplets:
small - 1/8" or less
large - greater than 1/8"
Shape:
none - O
round - a fairly reqular circular form
squared - a geometric shade with corners
Number of chaplets:
none - 0
few - relative to the surface area of the sculoture
```

many - number $1 s$ relative to the surface area of the sculoture, there are several scattered over the surface

Chaolets are:
similar alloy - color of one or more chaolet is visually similar to the allay of the sculoture
noticeably different alloy - one or more chaolets are a different color visually form the rest of the sculoture

Iron chaplets remain: orie or more chaolets aooear to be maoe of iron, or have beeri checked with a magnet whenever possible

Chaolet density in radiograoh:
light - more dense than the alloy of the sculoture itself
same as the sculoture - the allay of the chaplet apoears equal in density to the alloy of the sculoture or the color of the chaolets vary
dark - the allay of the chaolet is less dense than the alloy of the sculoture itself

Chaplets:
voids remain - regular holes in the sculoture which apoear where chaolets have been lost or removed
lacing chaplets - chaolets which go all the way through the piece in a continuous back and forth motion which would be continuous to extremities before chaplets are cut and chased
chaplets do all the way througn piece - chaolets go in one end of the sculoture and come out the other side

Dins located in cracks - a crack or casting flaw which has been stooped by a pin at one or both ends of the crack. or, which has been reoaired at an intermediate ocirit
threaded chaolets - chaolets which aooear to have threads in the radiograph, or when possible visually evident from interior examination
pegs - interior dowels which are evident in the radiograoh which extend in from an interior wall and appear to serve no puroose
wires used for chaolets - at least one wire is used to function as a chaplet

Only wire holes remain - a wire or wires used for chaolets have been lost or remaved

```
rimmoer af armatures - wheriever oossible the rimmber gf armatimes
    which aopear in the raadigor`aoh ar`e counted
allay of armature:
    iron - magnetic attraactian to the oiece follgws tne lines
    Gf ari interigr armature evident iri the radigoraoh ar checked
    with a magnet
    cooper allay - armmatur`e is rionmaorietic
Armatures are:
    knarled - armature is buriched uD with raridom bends
    hoooed - armature follows the interior curvature of
    of the sculoture
    wired - two ar maree wires which have been tied topetner
    with arwigher wire twisted around them
    str`aight - armatur`e wire is mot bent
    Intertwined - two Gr more wires are twisted together
    at various paints
    coritinuoss - armature wires are conriected to one another
    in orie or a cmmbination of methods listed above
    discontinuous - armature wires are not connected
Distributiori of ocirosity:
    even - oorosity aooears on the radiograoh to be consistent
    gverall
    smeven - porasity appears on the radigoraoh in selected area
Size of pores:
    small - the oores (air o口ckets) are 1/Jこ'%or less
    large - the oores are much greater than 1/\Xi2"
Amount of Porosity: (a ratio of the surface)
    small - a slignt amount of oorosity is visible in the
    radiograoh
    medium - there is an averaoe amount of porosity iri
    comoarison to several ather bronzes
    large - there is a generous amount of pores overall
    nore - there are rug D曰res visible in the radiograon
Thickness of metal:
    thir - the walis rit the sculoture, relative to the size of
    the piece aosear tig be very narrow when viewing the ooacity
```

in the radiodraoh
average - the walls of the sculoture, relative to the size of the piece are thicker than the thin walled ororizes, arid thinner thari the thick walled bronzes
thick - the walls of the sculoture relative to the size of the oiece have much more mass than usual
even - the walls are relatively the same thickness overall
urieven - the thickriess of the walls varies greatly overall
solid - the sculoture has been cast without a core

Drioping implying sibsh casting: this is a fagrication technique thought to first be used by Antico in the Renaissance; drios of excess wax accumulate within the interior of the sculoture as the driooing molten wax cools before it can be poured off, thereoy forming corresponding variatioris in the radiograoh of the metal sculoture

Lost Wax - the most common method of fabrication, is a technique in which a wax model is made arid invested in a clay mold, the wax is heated and melted away, and reolaced by molten metal poured into the mold

Sand Casting - a fabrication technique not used before the l6th century, arid more commonly used in the l9th century. A rather anoular core forms the interior. With this technique the oiece is formed from several seoarately cast pieces, dependirig an the complexity of the model.
mold lines present: mold lines (flashings - ridpes of metal which follow a possible mold oattern) which are left unchased on the surface

Crackirg of casting: oreaks in the metal which occur or the surface of the sculoture, and which may continue irito the wall of the sculoture

Back mounting hole: a hole intentionaliy formed for the mounting of the sculoture or for the removal of the core and left ooen

Hole on too of head: a hole intentionally formed on the too of the sculoture oerhads for the removal of the core arid left open

Hole on the underside: a hole intentiorially formed on the lower surface which could be used for the removal of the core and then left goen

```
magrietic metal:
    overall - when there is maonetic attraction over the eritire
    surface of the sculoture indicating that there is a hioh
    irgn content in the alloy
    lacal-magnetic attracticm ir, soecific areas which may
    be identified as either a chaplet or armature
Pieced in wax: at least ane or more oarts ar sections were added
    or revised in the wax model for comoosition changes, reoairs
    or for technical reasons for the fabrication of the
    sculoture; in the radiograoh the seam aooears dense
Cast in oieces and joined: at least one or more Darts or
    sections were cast in seoarate oieces and attached
    in the metal by mechanical or thermal methods; in the
    radiograoh the searm aodears to be less dense or light
Regairs: all reoairs, casting flaws, and later reoairs are
    identified uriless the reoairs can absolutely be identified
    as a later reoair
Casting Flaws:
    few - three or less obvious casting flaws
    numerous - more than three obvious casting flaws
    reoaired - a least one flaw has been reoaired
    goen - at least one flaw has not been reoaired
    smade of reoairs:
        irreoular - amoronous snaoed reoairs visible on the
        surface of the sculoture or visible in the radiooraon
        regular - oeometric or regularly snaoed reoair formed
        by the workirio with tools
    reoairs are:
        puddled - hot metal is ooured intg damaged or flawed
        area
        mechanically added (tapped) - damape or flaw has been
        repaired by hammering cold metal into the area
        lead reoairs - lead is used in the filling of the voids
        solder - low melting ooint metal, or higher melting
        point metal used to braze the damaoed or flawed area
        rivets - a oin which reaches the surface and the end
        is exoanded
        threaded - a gin which has soiral groves which give
        tooth to tne join
        pinned - an interior dowel which attaches two pieces
```

```
Core:
Hollowness - figures are cansistently examined in the following
order: man, woman, animal, when more than one of the same from
top to bottom
    Torso:
    solid - body and head are comoletely solid cast
    mostly solid - head is solid, and the body is only partially
    solid
    mostly hollow - body is hollow and head is solid
    hollow - body and head are hollow
    Arms:
    solid - arms are comoletely solid cast
    mostly solid - ,iooer arms are hollow
    mostly hollow - whole arms are hollow
    hollow - arms arid hands are hollow
    differ - arms have different hollowness from one another
    Legs:
    solid - whole leas solid
mostly solid - thiohs are hollow
mostly hollow - whale leos are hollow
hollow - legs and feet are hollow
differ - legs have different hollowness from one another
Appendages - other than arms and legs:
solid - entire aopendade is solid
mostly solid - less than half hollow aooendaoe
mostly hollow - greater than half but less than entirely
hollow appendage
hollow - entire aooendage is hollow
    Attributes: hollowness determined as apoendages
Base: when base is visible in radioaraon or visually
examined
solid - base is solid, or it can be solid with small holes
which extend into the interior of the sculoture
Hollow: base is hollowed, or it is solid and hollowness
extends from a laroe void in the sculoture
Core is:
    carefully modeled - core follows the contours of the figure
    with the oossible exceotion of the limbs or attributes
    which can be solid or partially solid
    Dartially modeled - core follows only some of the contours
    of the figure
    not modeled - care is a blocked shade
Core is removed:
    none - no core remgval is evident from the radiograoh or
```

```
from visual examination
some - core has oeen partially removed evident from visual
or radiograoh examination
much - most or all of the core material has been removed
determined from visual examination
Scoooing out of core for armature: in tne radiooraon one can see
    a rounded, less dense area at the end of an armature
    and sometimes along the lenoth of it
Local scognirig: radiograoh snows less dense areas wnere it
        apoear's as thgugh the core has been removed in a particular
        area
```


Decoration and Finisning:

```
Silver inlaid eyes
Probable inlaid eyes missing
Silver feet
Silver leaf
Gold Leaf
Mercury Gilding
Tooling:
fine - meticulous working where tool marks are not evident medium - tool marks may be evident, but surface is not as finely worked
crude - tool marks are rough and very evident, unchased and unoolished
Stroke:
Short-abruot or interruoted tool marks Long-continuous or sweeping tool marks Punching - smali circular indented tool maris
Tooling used for:
texture - tooling used to decorate the form in addition to the minimal desion design - tooling used to define form minimally
Relief: design extencs to front and sides, and not the back
In the round: sculoture whicn can be viewed form all angles including the back
Degree of finishing Gri back: low-small amount of finishing on the back, not well chased or polished
average - surface is somewhat worked on the back to a defined degree of finishing
high - surface bin the back is finely worked
same - the degree of finishing is the same as the finishing
```

```
on the frant of the sculoture
different - the degree of finishing is different from that
on the front
Design continues under attributes: the form is modeled under an attribıte which may or may not have been added later
Flashing left Gin surface (inchased): irreoular ridges of metal left on surface, a ridoe filling a fissure
Fissure / interior flasning (light) - dense, jagged lines in the interior af the sculoture, which are visible in the \(x\) ray and correlate to an interior flashing cause from a cracking of tne core duririg casting
Cracks in metal (darix)-less dense, jagqed lines visible in the radiooraoh of the sculoture which correlate to cracks in the metal not readily aoparent on the surface of the sculpture
```


Patina:

```
Color:
red-brown
brown
green
black
golden- oatina color as opoosed to color of metal showing through nor does this refer to surface gilding
Translucent-tine color of the metal snows trough a nonopaque patina
Doaque - the color of the oatina does not allow the color of the metal to shaw throuoh ..
Even - color of coating is consistent overall
Uneven - color gf coating is varied
Streaked - linear variations in colar of oatina
Splotched - spotty, isolated areas of various colors
Mottled - undulating variation of color of oatina
Chipped - olatelettes of Datina have lifted off exposing the metal below
Worn - areas where more metal is exposed due to loss of patina from some sort of abrasion
Bubbled - small soots where there was a conglomeration of pigment in a varrish patina
Bubbled and burst - small soots where patina has lifted and
```

```
        soalled off
    Metallic Flakes Aoolied - varnish oatina or fills which
    have a luster due to metallic shavinos or flakes
    Old Certain-oatina aopears to be original accordino to
        our current level of knowledae on Renaissance patinas
    New Certain - patina aooears to be modern, not consistent
with the date of fabrication, it snows no logical signs
of wear, varnish, or chemical patination "looks recent" to
the trained conservators eye
Aoe Uncertain - unsure of aoe of patina, there may be sions
of wear", but varnish or chemical patina is rot "typical"
of that which a trained conservator would exoect
Combination - ari older gatina which has been chipoed and
worn, with a modern patina which covers over all areas
Degree of patinated surface fineness:
high - a chemical or varnish patina which has
a consistent quality, althounh it may be worn
medium - a patina, with more inconsistencies
and less of a oolished look
crude - a patina which has many inconsistencies and flaws in
its application, and is monmoolished, with a dull surface
```


APPENDIX 3

CASTING AND DECORATING FEATURES: DATA FORM

RENAISSANCE BRONZES: CASTING TECHNIQUES

Sculpture No.:
City: Region:
Certainty of regional attribution: certain

Subject:
Country:
plausible uncertain
certain plausible uncertain
certain plausible uncertain fake in.
cm.
very heavy
Data available: !:sual exam
core sample for: TL thin section
Another similar image exists imultiple castinas possible)

Structure:

Wires used instead of chaplets Only wire holes remain

Fepairs:

Castug tiaus	tevi	numerous	reparez	apen	
Sriape of rejairs:	iregular	regular			
Пеzars are:	cast on	meernanicaly	(tapedi)	lead recairs	soider used
nuets used		threaded	pinned		

Core:

Decoration and finishing:

Silver inlaid eyes probable inlaid eyes missing silver feet
Silver leaf Gold leaf Mercury gilaing
Tooling: fine medium crude
Stoke: short-abrupt long-continuous punching
Tooling used for texture or design Relief in the round
$\begin{array}{cll}\text { Uegree of iinisining on back: low average high same difierent uvailiv of } \\ \text { fin!sh!ng on hack: } & \text { low } & \text { averağe high }\end{array}$
Design continues uncer atwibutes (imphying possible later adations of attibutes)
Flashing lyt on surfane iurnchased \quad Flashing on interiof!t) Cracks in wax ir:eris an

Patina:

APPENDIX 4

PETROGRAPHIC DATA: DEFINITIONS

DESCRIPTION OF PETROGRAPHIC DATA RECORDED

Quartz. The percentage of quartz present in each thin section was estimated by reference to models for visual estimation of percentage composition of rocks (Williams, Turner, and Gilbert 1982:593-597). The most common size for quartz grains was recorded as fine (less than .1 mm), medium ($.1 \mathrm{~mm}-.4 \mathrm{~mm}$), or coarse (greater than .1 mm). The degree of sorting of the coarser grains in each section was determined to be poor (there is a wide range of grain sizes), moderate, or good (most of the grains are approximately the same size); shape of the quartz was originally recorded as angular, subangular, subrounded, or rounded (Pettijohn 1975:57), though later these categories were collapsed into just angular or rounded.

The following textures were recorded for the quartz grains: (1)polygonized - two to three subcrystals present in a single grain
(2) polycrystalline (a) four to ten subcrystals present in a single grain, or (b) more than ten subcrystals present in a single grain (the percentage of quartz grains that are polycrystalline was also noted); these categories were later combined to simply presence or absence of polycrystalline quartz
(3) microcrystalline - aggregate in which ind idual grains are less than .03 mm in size, as in chert
(4) fibrous - the chalcedony form of silica
(5) undulous (a) slightly - grain goes extinct in 1-5 degrees of microscope stage rotation, or (b) strongly - grain goes to complete extinction only with more than 5 degrees of microscope stage rotation; these were later combined to presence or absence of undulous extinction
(6) vacuoles - negative crystal inclusions in the grain, of ten filled with liquid and having the same crystallographic orientation as the main quartz grain; these could include either many small ones or one or a few large ones
(7) authigenic overgrowths - secondary growth along the edges of the grain boundary
(8) inclusions of other minerals in the quartz grains

Organic Matter. This appears in both uncarbonized and carbonized form. For both forms the overall percentage present and the most common size were determined in the same manner as for quartz grains.

Carbonates. When present, these were recorded as rare, abundant, or very abundant. The most common size was determined to be fine, medium, or coarse, using the same criteria as for the quartz grains. If rounded edges or rhombic shapes were present, these were noted. The presence of possible dolomite (rhombic shape, cloudy center and clear rim) or siderite (yellow-brown color from alternation to limonite) were also noted.

Hematite. If present, was recorded as rare (one has to hunt to find any on the slide), abundant (easy to find), or very abundant (permeates the slide).

Feldspars. The presence of plagioclase feldspar was recorded with its approximate percentage computed in the same manner as for percentage of quartz grains. The percentage of alkali feldspars were also recorded, broken down into microcline or orthoclase categories. Only data on the presence or absence of these feldspars was used for the statistical work.

Micas. Presence or absence was recorded for: muscovite, biotite, phlogopite, chlorite, and chloritoid. Phlogopite and chloritoid were so rare in these samples that they were dropped for the statistical analysis.

Pyroxenes. The presence or absence of clinopyroxenes was recorded. If present, the type was determined whenever possible. Orthopyroxenes were recorded as either enstatite or
hypersthene.

Amphiboles. Only hornblende was seen in these samples.

Lithic Fragments. These were primarily metamorphic or volcanic, although some sedimentary and plutonic lithics were also seen.

Other Minerals. The presence or absence was recorded for the following minerals: epidote, clinozoisite, apatite, zircon, rutile, spinel (which was either magnetite or ilmenite), tourmaline, garnet, glauconite, gypsum, serpentine and olivine. In a few samples sphene and graphite were also seen, but these were too few to include in the statistical analysis.

Clay. The remainder of the casting core consists of clay minerals of one type or a mixture of types. These cannot be further identified in thin section.

APPENDIX 5

PETROGRAPHIC DATA: FORM

data number	museum \#	sculpture	artist/region
G08	85.SB. 68	Female Virtue or Allegory	Venice
G09	85.SB. 69	Satyr	Cellini
G10	85.SB. 72	Kicking horse	Caspar Gras
G11	85.SB.73.1	Stupidity and Fortune	Francesco Bertos
G12	85.SB.73.2	Industry and Virtue	Francesco Bertos
G13	85.SB. 74	Eleven figures	Francesco Bertos
G14	85.SB. 75	Mars and Venus	Flemish
G15	85.SB. 184	Mercury	Allesandro Vittoria
G16	85.SB. 413	Laocoon	Giovanni Foggini
G17	85.SB.418.1\&.2	Two Sphinxes	Italy
G18	L.86.SB. 55	St. Stephen	Nicolo Roccatagliata
G19	L.86.SB. 134	San Giorgio	Nicolo Roccatagliata
G20	L.86.SB. 143	Jupiter	Palma
G21	L.86.SB. 144	Francoflemish Venus	Unknown
G22	86.SB. 488	Rearing Horse	Adrien de Vries
G23	86.SB. 688	Bust of a Young Man	Antico
G24	86.SB. 734	Putto or Infant Christ	Campagna
G25	87.SB. 50	Venus with Cupid and dolphin F.B.	
G26	$\begin{gathered} \text { L.88.SB. } 39.1 \\ \text { (88.SB.73) } \end{gathered}$	Rape of Orthiyia by Boreas	Marsy
G27	$\begin{gathered} \text { L.88.SB. } 39.2 \\ (88 . S B .74) \end{gathered}$	Rape of Proserpine by Pluto	Girardon
G28	44.5.86	Virgin and Child (from Museum of Fine Arts,Houst	Susini on)
G29	$\begin{aligned} & 74.560 \mathrm{C} \\ & (49.26 .2) \end{aligned}$	Palissey (ceramic) from Los Angele Museum of Art	s County
G30	L.83.SB. 20	Andromeda (French)	Robert LeLorrian
G31	85.SB. 63	Kneeling Satyr	Riccio
G32	85.SB. 67	Triton	Unknown
G33	85.SE. 55	romanesque aquamanile ca. 1220 Hildesheim or Magdeb	Lower Saxony urg
G34	86.SB.5.1	Dog	Germany
G35	86.SB.5.2	Bear	Germany
G36	L.87.DE. 98	Palissey basin (ceramic)	
G37	87.SB. 50	F.B. Venus Same as \#25	
G38	L.87.SB. 102	Hercules and Hydra	Giambologna
G39	L.87.SC. 101		
	(88.SC.42)	Bust of Mme Recamier (ceramic) Chinard	

Plagioclase Feldsoar Aooroximate \%
Alkali Feldsoar
Microcline
OrthoclaseOther
Muscovite
Biotite
Cnlorite
Clinooyroxene
Tyoe
Orthooyroxene
EristititeHyoersthene
AmoniboleHornolendeOther
Eaidote
Clinozoisite
Aoatite
Zircon
Rutile
Soiriel
Magnetite
Ilmenite
Lithic Fraoments
Metamorohic
Sedimentary
Volcanic
plutonic
Tourmaline
Garnet
Glauconite
Gyosum
Seroentine
Olivine
Other:

APPENDIX 6
KEY TO THE DATA TABLE

Key to the Dataset

(The column numbers not listed refer to blank columns)

column(s)	type of data	key
$1 \diamond 2 \bigcirc 3$	Sculpture number	G: Getty + assigned number K: Kunsthistorisches + catalog number
5	Line of Data	1
7	Region	A: Flemish D: Padua E: Netherlands F: France G: Germany I: Italy L: Florence M: Milan N: North Italy (Padua, Milan, Mantua) P: Spain R: Prague S: South Italy T: Mantua U: Uncertain V: Venice
8	Artist	U: Uncertain A: Antico B: Bertoldo di Giovanni C: Jacopo Sansovino D: Tiziano Minio E: Alessandro Vittoria F: Tiziano Aspetti G: Nicolo Roccatagliata H: Johann Gragor van der Schardt

$20 \diamond 21022$ Depth in centimeters XX.X

24 Number of separately cast pieces
1: one
2: more than one

How separately cast pieces are attached:

25	Cast on	$0:$ no	$1:$ yes
26	Brased/Welded	0: no	$1:$ yes
$\mathbf{2 7}$	Soldered	no	
$\mathbf{2 8}$	Pins	$0:$ no	$1:$ yes
$\mathbf{3 0}$	Rivets	$0:$ no	$1:$ yes
$\mathbf{3 1}$	Screws	$0:$ no	$1:$ yes
$\mathbf{3 2}$	Sleeve/interior hoop	$0:$ no $1:$ yes	
		$0:$ no $1:$ yes	

Chaplets

34	Size	0: none
		1:1/8" or less
		2: greater than $1 / 8^{\prime \prime}$
35	Shape	0 : none
		1: round
		2: squared
36	Color in x-ray	0 : none
		1: light
		2: dark
		3: same/medium/varies
38	Number	0: none
		1: few
		2: many
39	Iron chaplets replaced	0: no chaplets
		1: Iron remains
		2: ..w/ similar alloy
		3: ..w/ different alloy

40	Voids remain	0 : no 1: yes
41	Chaplets go through piece	0 : no 1: yes
43	Pins located in cracks	0 : no 1: yes
44	Threaded chaplets	0 : no 1: yes
45	Wires used instead of chaplets	
		1: yes
		2: wire holes remain
47	Number of armatures	9: nine or more (number is indicated if less than nine)
48	Armature material	0 : none
		1: iron
		2: copper alloy
49	Armatures are:	0: no armature
		1: not knarled
		2: knarled
50	Armatures are:	0: no armature
		1: not straight
		2: straight
52	Armatures are:	0: no armature
		1: not hooped
53	Armatures are:	0: no armature
		1: not wired
		2: wired

54	Armatures are:	0 : no armature 1: not intertwined 2: intertwined
55	Armatures are:	0 : no armature 1: discontinuous 2: continuous
57	Distribution of porosity	0 : none 1: even 2: uneven
58	Size of pores	$\begin{aligned} & 0: \text { none } \\ & 1: 1 / 32 \text { " or less } \\ & 2: \text { greater than } 1 / 32 \text { " } \end{aligned}$
59	Amount of porosity	0 : none 1: small 2: medium 3: large
60	Thickness of metal	0 : thin 1: average 2: thick 3: solid
62	Thickness of metal	0: even 1: uneven 2: solid
63	Technique	$\begin{aligned} & 0: \text { slush } \\ & 1: \text { lost wax } \\ & 2: \text { sand } \end{aligned}$
64	Mold lines present	0 : no 1: yes
65	Cracking of casting	0 : no 1 : yes

66	Hole in back	0 : no 1: yes
68	Hole on top	0 : no 1: yes
69	Hole underneath	0 : no 1: yes
70	Magnetic metal	0 : none 1: local 2: overall
71	Light, dense area at join (joined in wax)	0 : no 1: yes
72	Dark line at join (joined in metal)	0 : no 1: yes
74	Casting flaws	$\begin{aligned} & 0: \text { none } \\ & \text { 1: few } \\ & \text { 2: numerous } \end{aligned}$
75	Casting flaws	0 : none 1: repaired 2: open 3: both
76	Shape of repairs	0 : none 1: irregular 2: regular 3: both
78	Repairs are:	$\begin{aligned} & 0: \text { no repairs } \\ & 1: \text { not cast on } \\ & 2: \text { cast on } \end{aligned}$
79	Repairs are:	0 : no repairs 1: not mechanically added 2: mechanically added

0 : no repairs
1: not puddled
2: puddled
$1 \diamond 2 \diamond 3 \quad$ Sculpture number

5
Line of data

Repairs are:
0 : no repairs
1: not lead
2: lead used

8
Repairs are
0 : no repairs
1: not soldered
2: soldered

9
Repairs are:
0 : no repairs
1: not riveted/pinned
2: riveted/pinned

10
Repairs are:
0 : no repairs
1: not screwed
2: screwed

11
Repairs are:
0 : no repairs
1: not less dense material
2: less dense fills used

Hollowness of:
13 1st figure torso

14
1st figure arms
15
16
1st figure legs
1st figure appendages/attributes
18
19
2nd figure torso
3: mostly hollow

20
21
2nd figure arms
4: hollow
2nd figure legs
5: differ
2nd figure appendages/attributes

23	Base	$\begin{aligned} & 0: \text { non-metal/not original } \\ & 1: \text { hollow } \\ & 2: \text { solid } \end{aligned}$
24	Core	0 : none (solid) 1: not modelled 2: partially modelled 3: carefully modelled
25	Core	0 : no core 1: none removed 2: some removed 3: much removed
27	Scooping of core	0 : no core 1: no scooping 2: for armature 3: local scooping
29	Silver eyes	$\begin{aligned} & 0: \text { no } \\ & \text { 1: yes } \\ & \text { 2: inlay missing } \end{aligned}$
30	Gilding	0 : none 1: leaf 2: mercury
31	Tooling	$\begin{aligned} & 0: \text { fine } \\ & 1: \text { medium } \\ & 2: \text { crude } \end{aligned}$
32	Stroke	0 : short 1: long
34	Tooling for texture (decorate form)	$\begin{aligned} & 0: \text { no } \\ & 1: \text { yes } \end{aligned}$

35	Tooling for design (defines form)	$\begin{aligned} & 0: \text { no } \\ & 1: \text { yes } \end{aligned}$
36	Format	0 : relief 1 : in the round
38	Back finishing	1: same as front 2: less than front
40	Flashing left on surface	$\begin{aligned} & 0: \text { no } \\ & 1: \text { yes } \end{aligned}$
41	Flashing on interior(light) 0 : no	1 : yes
42	Flashing in wax interior(dark)	1: yes
$44 \bigcirc 45$	Color of patina (44 is primary color; 45 is secondary color.)	0 : none (for one color) 1: red-brown 2: brown 3: green 4: black 5: golden
46	Transparency	0 : none 1: transparent 2 : opaque
47	Patina	0 : even 1: uneven
49	Streaked patina	$\begin{aligned} & 0: \text { no } \\ & 1: \text { yes } \end{aligned}$
50	Splotched/mottled	$\begin{aligned} & 0: \text { no } \\ & 1: \text { yes } \end{aligned}$

51

Chipped patina
0 : no
1 : yes

52 Worn patina 0: no
1: yes

53 Bubbled and/or burst 0: no
1: yes
$55 \quad$ Metallic flakes 0: no
1 : yes

56
Patina
0 : old
1: new
2: both- two types
3: uncertain

57 Degree of patinated surface fineness
0 : high or shiny
1: medium
2: crude

1,2,3	Sculpture number	
5	Line of data	3
7	Quartz percentage	0 : absent 1: 1-5\% 2: $5-10 \%$ 3: $10-20 \%$ 4: $20-30 \%$ 5: 30-40\% 6: 40-50\% 7: > 50\%
8	Quartz size	```0: inapplicable fine 2: medium 3: coarse```
9	Quartz sorting	0 : inapplicable 1: poor 2: moderate 3: good
10	Quartz shape	0: inapplicable angular 2: rounded
11	Polygonal quartz	0 : absent 1: present
12	Polycrystalline quartz	0 : absent 1: present
13	Microcrystalline quartz	0 : absent 1: present
14	Fibrous quartz	0: absent 1: present
15	Undulous quartz	0 : absent 1: present
16	Quartz vacuoles	0 : absent 1: present
17	Authigenic quartz	0: absent 1: present
18	Quartz inclusions	0 : absent 1: present

20	Uncarbonized Organics	0 : absent 1: present
22	Carbon percentage	0: absent 1: 1-5\% 2: $5-10 \%$ 3: $10-20 \%$ 4: 20-30\% 5: 30-40\% 6: 40-50\% 7: > 50\%
24	Carbonate amount	0 : absent 1: rare 2: abundant 3: very abundant
25	Carbonate size	```0: inapplicable fine medium 3: coarse```
27	Hematite amount	0 : absent 1: rare 2: abundant 3: very abundant
29	Plagioclase feldspar	0: absent 1: present
30	Microcline feldspar	0: absent 1: present
31	Orthoclase feldspar	0 : absent 1: present
33	Muscovite	0: absent 1: present
34	Biotite	0: absent 1: present
35	Chlorite	0: absent 1: present
37	Clinopyroxene	0: absent 1: present
38	Orthopyroxene	0 : absent 1: present
39	Amphibole (hornblende)	0 : absent 1: present

41	Epidote and clinozoisite	0 : absent
43	Apatite	0: absent
		1: present
44	Zircon	0: absent
		1: present
45	Rutile	0 : absent
		1: present
47	Spinel	0: absent
		1: present
49	Metamorphic lithics	0 : absent
		1: present
50	Sedimentary lithics	0 : absent
		1: present
51	Volcanic lithics	0 : absent
		1: present
52	Plutonic lithics	0: absent
		1: present
54	Tourmaline	0 : absent
		1: present
55	Garnet	0: absent
		1: present
56	Glauconite	0: absent
		1: present
58	Gypsum	0: absent
		1: present
59	Serpentine	0: absent
		1: present
60	Olivine	0: absent
		1: present

APPENDIX 7

DATA TABLE

```
KO2 1 LBD1 325
KOZ 3 2122111111001 0 0 11 0 001 101 000 1 100 1 0000 0100000
KO3 1 L
K03 2
K03 3 42121111110100 32 3 101 1111000 1 101 1 1100 101 010
KO4 1 N
K04 2
K04 3-111200000000 1 0 21 3 100 101 000 1 000 0 0000 001 000
K05 1 I
KOS 2
```



```
K08 2 211111 4240 0000 033 1 1201 011 1 000 2020 00000 030
KO8 3
KOF 1 TAE1 394 13333 333 112 2100 00000000000 2121 10000 00110 111 112
KOG 巳 1111:1 4340 4440 131 1 0001 011 1 010 2020 00000 030
KO9 3
K10 1 TA
k1O 2
K10 3 412110001000 0 1 111 2 101 1011000 1 010 100000 001 000
K111 NUEO 334 13333 333112 201 000 00000000 112100010000 00 111 111
K11 2 11112 44440000 031 3 1101 011 1 010 422000000020
K11 3
K121 N EO 185 13333 333000 0000 000 0000 0000 2113 2100000 00 112 111
K12 2 1211111110000000000 1011 011 1 000 232001000 031
K12 3
K13 1 N EO 295 13333 333 112 21100000 000000000 1121 01000 11100 1111 112
K13 2 1 11111 4440 0000 032 1 1001 011 1 000 4020 00000 020
K13 3 6121111111101 1 2 21 1 101 1111000001100001000000001
K14 1 N EO 185 20001 000 113 201000 1 12 1112 11
K14 2 112111411100000 031 1 0011 011 1 000 2520 001100031
K14 3 312211001100 0 4 11 0 100 100 00000000 0 0000 000 000
K15 1 N EO 122 13333 333113 200 000 0000 0000 0000 01010 00 00 112 121
K15 2 111111441100000 031 1 0011 011 1 001 5210 01010031
K15 2 111111411100000 031 1 0011 0111 110001 5210 010100031
K161 N EO 186 20001 000 000 00000000 0000 0000 21111
K16 2 00000 411000000 033 1 0011 011 1 000 42.20 00010 031
K16 3 1122010010000 2 111 1 000 000 100 1 010 100000000000
K17 1 N EO 085 13333 3330000 00 000 00000000 2111 01000 10 00 000 000
K17 200000 4330 0000 033 1 00111 1111 1 011 2020 000100 031
K17 3 122100010000 1 0 11111000 001 000 0 000 10000 000 000
K18 1 N FO 147 N
K18 2 111111 411000000 033 1 0011 1111 1 000 4220000010 031
K18 3
K19 1 N EO 126 13333 333 123 1 00 000 2 12 1111 2111 01000 01 00 120 000
K19 200000 4120 0000 032 10011 011 1 000 4220 00110 032
K19 3
K20 1 D
k20 2
K2O 3 4211111111100 1 1 11 2 100 111100000000 1 0010 000 000
```

```
K21 1 D
k21 2
K21 3 413211001000 0 1 1110 10001000000000 0 0000 000 000
K2Z 1 N FO 123 20100 000 112 1 00 002 1 12 1112 2111 01000 00 01 120 000
```



```
ke2 3 212211001000 1 700 1 100000 000 0 000 1 0000 001 000
K23 1 N EO 288 20010 000 121 1 00000 00000000 2 21 11000 00 11 212 121
K23 2 12111 2130 0000 031 1 0001 11111 010 252100010 031
k23 3
Kこ7 1 D
k27 2
K27 3 7212110011000000001000010000000000010000001
K28 1 I
K28 2
K28 3 212211111000 1 1 11 0 100 111100000000 0 1000 000 000
k30 1 V
k30 2
K30 3 721111000001 0 0 11 0 100 101 000 0 101 0 0000 0000000
k31 1 N
K31 e
K31 3 421111001101 0 0 11100 100 111100000000 1 10000000000
K32 1 U EO 173 13333 333 112 1 11 00000000 0000 2122
k32 2 11211 41400000 023 10021 011 1 010 242000010 021
K32 3 412210001000 1 400 1 000 001 1000000000000 000 000
K33 1 N FO 231 13333 333000 0000 000 0000 0000 0002
k33 2 12211 1010 0000 20000 0011 011 1 000 1020 00110 031
K33 3 413200001001 0 0 31 1 000 111100000000 10000 000 000
K35 1 U HO 325 13333 333 112 1 00 000 E 12 11111 211
k35 2 1111111433000000 132 10011 011 1 1 010 2011 00010 031
K35 3 7222011111001 0 300 0 101 1111 10000010001000000000
K36 1 L GO 308 13333 333000 0000000 0000 0000 2123 21000 00 00 23
K36 2 111110000 20000 0011 111 1 000 1020 000100031
K36 3 212211011000 0 0 11100000 101 000 0 000 1 0000 000 000
K37 1 IUGO 156 13333 333 112 1 00 000 1 12 11111 0002 11000 01 00 000 000
K37 2 00000 2130 0000 023 1 0021 011 1 000 2320 01110 021
K37 3 6211011111101 1 1 00 0 100 1111000 0 110 1 0000 000 010
K38 1 N FO 065 13333 333 112 1 111 000 0000 0000 000
k38 200000 211110000 031 1 0021 011 1 101 4200 01010 031
K39 1 N FO 173 20000 000 000 0000 00000000 0000 0003 21000 00 00 112 121
K39 2 111111 11100000 00000 0011 011 1 000 2420000010 031
K39 3
K40 1 RKI1 189 20001 000 112 1 00 000 2 12 21111 1131 01000 00 00 120 000
k40 200000 4311 0000 031 1 0001 011 1 000 1020 00111 031
K40 3 321111101011 0 300 1 100 111100000011 0 0100 000 010
```



```
K41 2 11121 4120 4111 033 10001 011 1000 142001010 030
K41 3
K42 1 ICGO 430 13333 333 211 1 00 010 4 12 1111 2111 01010 00 10 212 121
k42 2 111111 44410000 231 10001 011 1 011 4220 00000 020
k42 3
K43 1 NDF1 345 20000 010 113 1 01 000 0000 0000 1121 01000 00 00 231
K43 2 < 4230 4200 132 1 0021 0111 1 000 4220 00010 021
K43 3 613111111101 1 1 11 2 110 101 000 0 011 0 0000 000 000
```


G09 1 LPGO $568184089133333330000000000000000001 こ 110101110010132111$ G09 21112144400000033102110102010202000111021
G09 3723211001101040001001100000110000000100000
G10 1 ULKO 35133011120000101213 こ 00010000000000112101000000111
G102 41440000032100011111000151000011030
6103
G11 1 VQM1 $51522914020100000111 \quad 2101 \quad 00000000000 \quad 113100000 \quad 00101231 \quad 111$ G11 2 11112 31104220031100101111100102000100131
G11 3
G12 1 VQM1 $511190 ; 130201000001112010000000000022310000000101231111$ G12 21111241204120031100201111000252000100131
G12 3
G13 1 VQM1 $79544136820100000111110110000000000 \quad 2 こ 110001000101 \quad 231 \quad 112$

G13 31132000100001100000011100000010000000000000
 G14 2 $1111144440444013210001 \quad 11111011232001010020$
G14 3
 G15 $=111114440400013210001011100040200000020$
G15 3
G1E 1 IRMO 56543221520100000112 2 010007 2e 1111 2111 0100100101 G16 ᄅ 4440444413310001111 e $000101001000 \quad 030$

G17 1 I HO 245 110 220 20100 000 e $100000 \quad 232 \quad 100000101231112$
G17 ᄅ 11111444144410 2 $0021 \quad 11$ こ 000342001000031
G17 3
G18 1 IG 260047629820000011213 2 000100000000021111100000101
G18 2 4440000013310011111 こ $000 \quad 342000000011$
G18 3
G19 1 IG 260448235520000010213200000000000001231010100001
$6192 \quad 444400001331000111111000302000000010$
G19 3
G2O 1 ISJO 47022828020011010111200012000000002131010000001232111 GEO 21212143404220032100010111000251000000110
G20 3
GE1 U KO 450 20001 001 213 200000412111100010100000 01 113 122 GE1 こ $11111144400000132 \quad 1000101111010$ 2020 00010 020
G21 3
 GE2 21111141110000132100010111011151100111000
G22 3
G23 TAE1 54745022313333333 212 1100000000000002231010100100112121 GE3 こ 11111440000000033110010111000200000010000
G23 311320000000002000000000000000000000000000
 G24 200000 4440 0000 031 0020 011 2010 342000110 032
G24 3
G25 1 FVGO 89035530520101000211211000031211111232010001101211112 G25 E 11111144404440133 こ 0011 011 1010402010000022
GES 331221100100102000101000000001000000000000
Gこ6 FUM1 99968545720100000 21 ᄅ $1100000912 己 122122110101000111133122$ G26 2 1111114444144411330001 11111011 201001010030
G26 3 321110001000 010021000000000000000000000100

```
G27 1 FWM1 999 457 457 20100 001 213 1 00 000 8112 1221 1231 01010 00111 133 122
G27 2 11111114440 4440 133 0001 0111 1 011 2010000010 030
G27 3 12210000000000 11 2000000000000000 00000 000 100
G28 1 L
G28 2
028 3 521211001000 1 1 00 1 100 110000 0 010 00000 000 000
G29 1 F
G29 2
G29 3 512201000000 1 1 00 1 100 1111 100 0 000 00000 000 000
G30 1 F
G30 2
G30 3 722201001001 0 1 00 0 100 010 000 0 100 0 0000 000 000
G31 1 D
G31 2
G31 3 213200000000 0 1 00 2 100 011 100 0 000 0 0000 000 000
G32 1 M
G32 2
G32 3721110011101 1 1 00 3 110 010 000 0 100 0 0000 000 000
G33 1 G
G33 2
G33 3 52211111111111 0 1 00 1 101 010 010 0 100000000 001 000
G34 1 G
G34 2
G34 3 323110011000 0 1 00 0000 1111 000 0 000 0 0000 000 000
G35 1 G
G35 2
G35 3 313101001000 0 1 0000000 100000 00000000000000000
G36 1 F
G36 2
G36 3 513211111100001100100000111000 0 110 0 1000000 000
G37 1 F
G37 2
G37 3412111011000 0 1 00 0 100 101 000 0 000 00000 000 000
G38 1 L
G38 2
G38 3 4211111011000111000100 1111 000 0 010 0 00000000000
G39 1 F p
G39 2
G39 3 422201001000 0 1 00 3000 001 000 0 000 0 0000000 000
```

