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Petra, Angkor, Copán, Venice, Lascaux, Easter Island. Stone conservation 
research may not be the first thing that comes to mind when reading 
these words, but it is because these places of irreplaceable cultural heri-
tage, and many other stone monuments, are eroding at a noticeable rate 
that the subject of this volume is of such crucial importance. In the sum-
mer of 1994, the Getty Conservation Institute (GCI) invited Professor 
Clifford A. Price to provide an overview of research on the conservation 
of stone monuments, sculpture, and archaeological sites. The purpose of 
the review, which was subsequently published in the 1996 book Stone 
Conservation: An Overview of Current Research, was to inform GCI 
research policy in this field and to highlight areas into which Getty 
resources might usefully be channeled. Today, a Google search for “stone 
conservation” raises this book in the first link—a testament to its endur-
ing usefulness to the wider conservation community. 

Stone Conservation remains one of the most cited and down-
loaded of the GCI’s books some fifteen years after it was written. A 
refreshingly opinionated work, its call to reform the focus and process of 
research was subsequently echoed and reinforced by other authors and 
institutions. By raising challenging issues, the book influenced a genera-
tion of conservators and scientists who have worked to advance the field 
of stone conservation. Indeed, progress on several key issues can be tied 
directly back to Professor Price’s frank observations and prescriptions. 
The need for both a conservation journal that reviewed scholarly articles 
and for rigorous peer review of conservation publications contributed to 
the subsequent formation of venues such as the IIC Journal, Reviews in 
Conservation, and the expansion of the GCI’s Research in Conservation 
series. His call to improve the quality and timing of conferences and the 
accessibility of proceedings was one of the stimuli for the recent develop-
ment of the Torun Guidelines adopted at the ICOMOS International 
Stone Committee meeting in 2008.

The fact that the stone conservation field has evolved significantly 
since 1994 prompted requests to update this popular volume, and in May 

Foreword to the Second Edition, 2010
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2007 GCI scientist Eric Doehne, with the advice and collaboration of 
Clifford Price, embarked on a new survey of the field of stone conser-
vation research. The goal was to retain key characteristics of the first 
 edition (notably its brevity, informal character, and pointed suggestions), 
while covering the recent explosion of new research, enlarging the discus-
sion of preventive conservation, and adding new sections on rock art and 
other subjects. This required a parallel compilation of a new bibliography, 
which included a review of more than six thousand abstracts and more 
than three thousand PDF files of material published between 1995 and 
2009. Topics ranged from nano-scale measurements of salt damage by 
materials scientists to conservators’ documenting the unintended conse-
quences of waterproofing agents. The selected bibliography drawn from 
this research effort is included in this new edition as an appendix and 
will be a useful starting point for many researchers. 

With increasing reliance on the Internet and the rapid develop-
ment of interdisciplinary research and teaching, we live in a time when all 
knowledge is being connected to all other knowledge. Building and main-
taining a coherent infrastructure for the conservation field, arguably one 
of the most interdisciplinary of endeavors, is a particular challenge. To 
advance the field of stone conservation and manage the growing variety 
and volume of information, practicing conservators and scientists need a 
framework for building a coherent base of useful knowledge. The second 
edition of Stone Conservation: An Overview of Current Research pro-
vides this framework in the form of a strategic overview of the past  
fifteen years in stone conservation research and an updated critique  
of the field’s strengths and weaknesses, with recommendations for  
future research. 

Timothy P. Whalen, Director
The Getty Conservation Institute
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Being a conservation scientist often means acting as a bridge—between 
researchers and conservation practitioners, and between the many differ-
ent fields of research related to the preservation and conservation of 
carved and worked stone, from Stonehenge to the Sphinx, and from ana-
lytical chemistry to X-ray tomography. Like the first edition, this volume 
is not a literature review. It is an overview that maps the landscape of 
stone conservation, cites interesting and representative research, and is 
intended to serve as a useful point of entry to the field.

I began the research for the second edition in May 2007 as an 
effort to update and highlight the significant changes that had taken place 
in the field since the first edition and to encompass a much larger range 
of publications. The text was largely written in 2008, with revisions and 
editing completed in 2009. Such an endeavor unavoidably results in a 
particular  perspective. This tendency has been ameliorated by consulting 
with an experienced, as well as linguistically diverse, group of conserva-
tion practitioners, researchers, and colleagues who have been very gener-
ous with their time. 

In particular, I would like to acknowledge the help and advice 
given by John Ashurst, Api Charola, Jose Delgado Rodrigues, Vasco 
Fassina, John Fidler, William Ginell, John Griswold, Chris Hall, Seamus 
Hanna, Adrian Heritage, Ioanna Kakouli, Lorenzo Lazzarini, Susan 
Macdonald, Bill Martin, David Odgers, Leo Pel, Sarah Pinchin, Francesca 

Preface to the Second Edition, 2010
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Pique, Jerry Podany, Thomas Roby, Carlos Rodríguez-Navarro, Eduardo 
Sanchez, Alison Sawdy, George Scherer, Stefan Simon, Michael Steiger, 
Marisa Laurenzi Tabasso, Giorgio Torraca, Véronique Vergès-Belmin, 
Heather Viles, Norman Weiss, George Wheeler, Chris Wood, Konrad 
Zehnder, and Fulvio Zezza. I would also like to acknowledge former  
GCI interns and postdoctoral researchers Enrica Balboni, Ann Bourgés, 
Tiziana Lombardo, Paula Lopez Arce, and Claire Moreau, who helped 
teach me more about stone through our joint research. The students of 
the International Course on Stone Conservation have also been a source 
of inspiration. The GCI’s Beril Bicer-Simsir, David Carson, Giacomo 
Chiari, Mara Schiro, and Jeanne Marie Teutonico provided important 
support. I am grateful to Valerie Greathouse and Tina Segler for their 
help in tracking down references and to Cynthia Godlewski and Cynthia 
Newman Bohn for their excellent coordination and editorial assistance. 
Two anonymous peer reviews of earlier drafts of the book were thorough 
and thoughtful. Finally, my coauthor has been brilliant in skillfully aiding 
my efforts to bind together the old and the new in this volume, and I 
extend my kind thanks to him for his enthusiasm for this project. 

Eric Doehne
Pasadena, California, June 2009
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The “sympathetic conservation” of historic or culturally significant stone 
is a relatively recently recognized practice. In the past, the repair of dam-
aged sculptured stone objects was frequently accomplished using more 
intrusive means, such as iron dowels, staples, or clamps that often marred 
the appearance of the object and could lead to further damage. For the 
patching and filling of defects, lime mortar, cement, plaster of Paris, 
sodium silicate, and various gums and resins were used—materials no 
longer considered acceptable. Stone-cleaning processes involved harsh 
acidic treatments followed, at times, by neutralization, which resulted  
in the production of soluble salts that penetrated the stone and increased 
the potential for future salt-crystallization damage. Damaged architec-
tural stone was either replaced or repaired with little regard to the mate-
rials’ compatibility with the stone, appearance matching, or the durability 
of the treatment. 

The unsuitability of many of these treatments encouraged 
research efforts to develop new materials and procedures for the preser-
vation of stone. Over the past twenty years or so, these studies have 
resulted in the publication of a vast number of reports and papers, most 
of which were concerned with case studies and how specific stone sub-
strates were treated. Few were accompanied by details of the research 
that supported the selection of the treatment method or materials used. 
Fewer yet were those concerned with stone-damage mechanisms or with 
scientific research on stone conservation processes, materials behavior, 
and environmental effects. 

Although research has proliferated, there has not been a recent, 
concerted effort to evaluate the direction in which research has been 

Foreword to the First Edition, 1996
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 progressing and whether or not the current direction is proving fruitful. 
Should the emphasis on stone conservation research be placed on devel-
opment of new materials and new application procedures? Has there 
been significant work on the evaluation of the post-treatment stone 
property improvements? Are the methods for evaluating stone properties 
universally accepted? Do we need to conduct research on methods for 
carrying out and assessing the long-term durability of treatments? Are 
there problems in the process of conducting stone conservation research 
that bear on our ability to do the research effectively? Can these prob-
lems be defined; and, if so, what can be done to further the effectiveness 
of stone research? These are some of the many questions that Clifford A. 
Price has considered in this review of the current status of stone conser-
vation research. 

We asked Dr. Price to give us his subjective viewpoint on what is 
being done right, what areas of current research should be continued or 
accelerated, and what new directions should be addressed that would 
promote an increase in the effectiveness of stone conservation. In the 
course of preparing this review, Dr. Price has had extensive discussions 
with a number of active participants in the stone conservation community 
and what has emerged is an engaging account on whither we seem to be 
going and in which ways, if any, our paths should be altered. 

William Ginell
Emeritus Head, Architecture and Monuments 
The Getty Conservation Institute, 1996
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This volume was written over a short period during the summer of 1994, 
following a systematic study of the major publications of the last five 
years. Inevitably, the volume reflects my own experience, expertise, and 
linguistic abilities. An international working party could, no doubt, have 
produced a more objective and comprehensive report—albeit over a 
 longer span of time. In order that my own prejudices might not shine 
through too strongly, I have consulted with other conservation scientists 
and stone conservators, and I am very grateful for the help and advice 
that they have given me. 

In particular, I would like to acknowledge the help given by John 
Ashurst, Norbert Baer, Guido Biscontin, Sue Bradley, Api Charola, Vasco 
Fassina, John Fidler, William Ginell, Lorenzo Lazzarini, Bill Martin, 
Antonia Moropoulou, Marisa Laurenzi Tabasso, Jeanne Marie Teutonico, 
Giorgio Torraca, and George Wheeler. I am also grateful to Sasha Barnes 
for the help that she has given in rooting out references and to Julie 
Paranics for help in the final production of the volume. 

The emphasis of this publication is on stone as a material. There 
is little reference to mortars, and no consideration of the structural per-
formance of stone masonry. This volume is not a detailed, state-of-the-art 
review, and many of the references I have given are intended as illustra-
tive rather than definitive. It is intended to give a strategic overview of 
the whole field and to identify areas of strength and weakness where 
 further research should be focused. 

Clifford Price
London, 1996

Preface to the First Edition, 1996
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We dedicate this book to the memory of John Ashurst, 1937–2008,  
in recognition of his unparalleled contribution to stone conservation 
through research, practice, and training.

Dedication
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After presenting his work at a recent stone conservation conference, a 
thoughtful researcher was responding to questions from conservators.  
A pained expression was evident on his face as he said to the audience,  
“I feel as though I am explaining in great detail why I cannot help you.”

This encapsulates the frustration felt by many who are involved 
in stone conservation at present. While great strides have been made in 
understanding why stone decays, the perception is that much less prog-
ress has been made in helping conservators cope with a number of long-
standing conservation problems. The researcher’s comment also highlights 
a central paradox in conservation: while progress is necessarily incremen-
tal, time and the elements steadily take their toll on cultural heritage, and 
the window for action to ensure that history is preserved for future gen-
erations is limited. 

This volume takes a broad and sometimes critical look at the 
present state of stone conservation and of the way in which research is 
conducted. It looks first at the deterioration of stone and ways in which 
deterioration may be prevented or remedied. Then, it discusses some of 
the factors that limit the effectiveness of research and makes recommen-
dations as to how research might be made more effective. It concludes 
with some reflections on changes that have taken place over the past fif-
teen years.

Introduction
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The deterioration of stone is all too familiar to anyone who has looked 
closely at a historic stone building or monument. While there are a few 
stones that seem little affected by centuries of exposure to the weather, 
the majority of stones are undergoing gradual and episodic deterioration. 
This may not matter much if the stone is an undecorated part of a mas-
sive wall. However, it does not take much deterioration of a carved piece 
of stone for the sculptor’s original intention to be lost altogether. A high 
proportion of the world’s cultural heritage is built of stone, and it is 
slowly but inexorably disappearing.

If we are to do anything to reduce or prevent this loss of our her-
itage, we must first be able to characterize the many stones involved. We 
need to be able to describe the decay and to measure its extent, severity, 
and rate. We then need to understand the causes and mechanisms of 
decay. Only then can we hope to understand the behavior of any particu-
lar stone in a given environment. 

CHARACTERIZING THE STONE

The literature is full of papers concerned with stone characterization. Pick 
up any set of conference proceedings and you will find numerous papers 
that first describe the situation and history of some particular monument 
and then lay out the physical properties of the stones involved. There will 
be petrological descriptions, followed by measurements of surface hard-
ness, porosity, capillarity, hygric and thermal expansion, pore size 
 distribution, mechanical strength, velocity of sound, resistance to salt 
 crystallization, and so forth. There will invariably be photographs taken 
on a scanning electron microscope and, for good measure, probably some 
energy-dispersive X-ray analyses. To what end? The information will no 
doubt be of value to those who are concerned with the care of that partic-
ular monument, but it is of questionable relevance to a wider audience 
unless the properties of the stone can be linked to its performance. At this 
point the field needs to move beyond basic characterization to a better 
understanding of material behavior (Torraca 2009) and the maintenance 
necessary to sustain long-term performance (Brand 1995). 

Most of the techniques for characterization are well established. 
Many are summarized by Robertson (1982) as well as Borelli and Urland 

Chapter 1

Stone Decay
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(1999) and Svahn (2006). Adams and MacKenzie (1998) provide a useful 
atlas of petrographic sections, while a more recent petrographic atlas and 
applications of polarized light microscopy to building materials conserva-
tion are presented by Bläuer and Kueng (2007) and Reedy (2008). 

In the process of characterizing stone, it is important to recognize 
that while some stones have a similar composition, their behaviors may 
have few things in common. For example, Istrian stone, Lecce limestone, 
and Carrara marble are all carbonate materials, but their contrasting 
modes of deterioration depend more on their porosity, pore shapes, pore 
size distribution, and grain size than their chemical composition. One 
division of stone types is based on the percentage and relative ratio of 
pore-shaped and fissure-shaped voids (Croci and Delgado Rodrigues 
2002). A second division can be made on the basis of the degree of  hygric 
swelling of the stone (Delgado Rodrigues 2001; Duffus, Wangler, and 
Scherer 2008), and a third division on the strength (Winkler 1985; 
Bourgès 2006). Subsequent divisions based on composition, texture, and 
homogeneity enable further distinctions to be made, but they may be less 
important in rating overall performance than the first three. Those stones 
with high porosity, high rates of swelling, and low strength tend to be rel-
atively poor building materials (e.g., Jackson et al. 2005). 

A review of the relationship between pore structure and other 
stone characteristics is given by Bourgès et al. (2008). Gauri and 
Bandyopadhyay (1999) review the interpretation of mercury porosimetry 
data and cite a number of the seminal papers on pore structure determi-
nation. Analysis of the positive correlation between the fractal dimension, 
stone pore surface, and the degree of natural weathering has shown that 
increases in the surface fractal dimension are a more accurate descriptor 
of the degree of weathering than pore size distribution (Yerrapragada, 
Tambe, and Gauri 1993; Pérez Bernal and Bello López 2000). 

DESCRIBING DECAY 

Stone decay takes many different forms. Stone may weather away gradu-
ally, leaving a sound surface behind; at times large scales of stone may 
drop away in one episode. Sometimes the surface erupts into blisters; 
sometimes the stone loses all integrity and simply crumbles away. Some-
times the stone may look perfectly sound to the naked eye, while below 
the surface it has lost its cohesion. 

One of the problems inherent in discussing stone decay is finding 
a common language. Even in English, there are a bewildering number of 
terms that may mean different things to different people. And even if  
we can agree on terms to describe the types of decay that we observe, it 
can be difficult to determine the severity or rate of decay. A significant 
advance in this area is the recent publication of a stone decay glossary by 
the ICOMOS Stone Committee under the editorship of Véronique Vergès-
Belmin (2008). Another effort to produce a glossary of decay terms is 
that of the Italian Commissione NORMAL (UNI 2006). Earlier work in 
this area came from the building stone industry in an effort to standard-
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ize terminology (Stone Federation of Great Britain 1991), governmental 
organizations (Grimmer 1984), and research groups (Fitzner, Heinrichs, 
and Kownatzki 1997). 

The ICOMOS-ISCS Illustrated Glossary on Stone Deterioration 
Patterns (Vergès-Belmin 2008) helps define and clarify usage across lan-
guages and within the stone community, providing useful definitions of 
terms such as scaling, spalling, and flaking. Weathering is generally 
defined as the result of natural atmospheric phenomena, while decay is 
“any chemical or physical modification of the intrinsic stone properties 
leading to a loss of value or to the impairment of use,” degradation is 
“decline in condition, quality, or functional capacity,” and deterioration  
is the “process of making or becoming worse or lower in quality, value, 
character, etc.” Some interesting details of the history of stone glossaries 
can be found in the introduction to the glossary.

A more guided approach than a glossary can be found in work on 
expert systems from the late 1990s, with Van Balen (1996; 1999) produc-
ing an atlas of damage to historic brick structures as part of an expert 
system for elucidating environmental effects on brick. The atlas evolved 
into a broader program known as the MDDS (Masonry Damage 
Diagnostic System) (Van Hees, Naldini, and Sanders 2006; Van Hees, 
Naldini, and Lubelli 2009). Expert systems have gone in and out of fash-
ion over the past fifteen years, but the need to capture expert experience 
and judgment has become ever more urgent, given the large number of 
conservation professionals nearing retirement age. 

Fitzner has produced an important classification of weathering 
forms as a basis for mapping the deterioration across a building facade 
(Fitzner, Heinrichs, and Kownatzki 1997). This system has also been pre-
sented in case studies (Fitzner, Heinrichs, and La Bouchardiere 2004). 
Such complex systems have been criticized because of the number of 
parameters to be measured (Moraes Rodigues and Emery 2008) as well  
as “cost concerns and the extensive training they require” (Dorn et al. 
2008). Fitzner’s classification recognizes nineteen different weathering 
forms and goes some way toward recording the severity of each, based  
on visual inspection (Fitzner 2004). Similar, but simpler systems have 
been described by Massa, Naldini, and Rorro (1991) and by Vergès-
Belmin (1992). Zezza (1990; 1994; 2002) has used digital image process-
ing to map different forms of surface decay. Starting with photographs 
and other nondestructive information, such as ultrasonic measurements, 
false color images are produced that identify particular forms of decay. 

HOW SERIOUS IS IT?  
MEASURING THE EXTENT AND SEVERITY OF DECAY 

In order to make real progress, we need to quantify decay. In other 
words, in addition to describing the type of decay, it is essential that we 
are able to measure its extent, or the area it covers; its severity, or how 
advanced the decay is; and the rate of decay over time. First, we need to 
do so in order to unravel its various causes. For example, how can we say 
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that pollution is causing decay unless we have some way of correlating 
pollution levels with decay? Second, we need to have some objective 
means of assessing the extent and the rate of decay in order to decide 
whether remedial action is necessary and, if so, how urgent the need is. 
Third, we cannot establish whether our remedial actions are having any 
effect unless we can monitor the condition of the stone afterward. 

If one accepts these eminently reasonable preconditions, then we 
are left with a situation where extremely few monuments today (or even 
paintings) meet these basic conditions. Conservation decisions most often 
rest upon a framework of experience and general guidelines for treatment 
compatibility, instead of data on the actual behavior or rate of loss of the 
monument. Conservation documentation for the majority of our cultural 
heritage appears to consist of a few uncalibrated photographs taken 
under different lighting conditions over a few decades. Helping to fill this 
void with more quantitative and reproducible approaches has been the 
objective of many of the research projects cited in this volume: turning 
“weathering” or “decay” into numbers. 

No single technique is sufficient to measure stone deterioration, 
since decay takes many different forms. Some techniques, such as 3D 
laser scanning and fluorescence LIDAR (light detection and ranging), look 
only at the surface, and they are well suited to decay that consists of a 
gradual loss of surface, leaving sound stone behind. Other techniques, 
such as ultrasonic measurements, thermography, or magnetic resonance 
imaging (MRI) are designed to probe below the surface, and these are 
useful where decay consists of a loss of cohesion within the stone, or the 
development of detached layers, blisters, or internal voids. 

Before using more complex methods, simple visual examination 
plays an important role in quantifying decay. A single examination can 
convey the state of the stone at a particular moment, but it does not cap-
ture the rate of decay. For this, a series of inspections is required, usually 
over a period of several years. Photographs are of immense value here, 
but their objectivity can be abused. Winkler (1975, p. 87), for example, 
constructs an alarming graph of exponentially increasing decay on the 
basis of just two photographs. Even within a series of photographs, a 
fundamental difficulty is that often they have been shot under differing 
lighting conditions, making the interpretation of surface loss challenging 
(GCI and IHAH 2006; Thornbush and Viles 2008). 

Two improvements in traditional photographic documentation 
show promise. One is the use of time-lapse methods to provide more 
 frequent images in order to correlate surface loss with environmental 
changes (Sawdy and Heritage 2007; Doehne and Pinchin 2008; Zehnder 
and Schoch 2009). The other is a new method known as polynomial 
transform mapping (PTM), a subset of RTI (Reflectance Transform 
Imaging), that is, the use of multiple photographs from different angles to 
document more comprehensively the texture of stone surfaces. This gives 
the viewer the ability to control the angle of the light source in a given 
image using Java-based software (Malzbender, Gelb, and Wolters 2001; 
Padfield, Saunders, and Malzbender 2005). See examples at: http://www

http://www.hpl.hp.com/news/2004/jan-mar/ptm.html
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.hpl.hp.com/news/2004/jan-mar/ptm.html and http://www.southampton 

.ac.uk/archaeology/acrg/acrg_research_PTM_amazon.html.

Surface Techniques 
Surface techniques for quantifying rates of stone loss include the use of  
a microerosion meter, profilometry, close-range photogrammetry, laser 
 scanning, and laser interferometry. The microerosion meter is a simple 
micrometer device that measures surface height at a number of predeter-
mined points relative to datum studs set into the stone. It was used, for 
example, to monitor the rate of stone decay at St. Paul’s Cathedral, 
London, over a twenty-year period, during which atmospheric sulfur 
dioxide levels in the region fell by 50 percent (Trudgill et al. 1992; 
Trudgill et al. 2001). Erosion rates on horizontal sites were found to have 
decreased from 0.045 mm/year in the period 1980–90 to 0.025 mm/year 
in 1990–2000. 

Optical profilometry is a contact-free technique that consists of the 
projection of a grid of lines onto the surface at an angle of 45°. Any irregu-
larities in the surface are immediately evident. Aires-Barros, Maurício, and 
Figueiredo (1994) have demonstrated its use, coupled with image analysis, 
to construct a weatherability index. Similar optical methods include laser 
triangulation, confocal microscopy, and digital holography. 

A technique for monitoring surface roughness known as contact 
profilometry was utilized by Jaynes and Cooke (1987) to monitor the 
decay of limestone when exposed to a range of different pollution envi-
ronments. It measures irregularities by means of a stylus that is drawn 
across the surface; movement of the stylus produces an electrical signal in 
a transducer. 

Grissom has compared stylus profilometry, reflected-light image 
analysis, and visual/tactile evaluation to assess the roughness of abrasive-
cleaned stone. The results found tactile evaluation to be the “more practical 
and cost-effective technique” (Grissom, Charola, and Wachowiak 2000).

Close-range photogrammetry was described by Coe and others 
(1992), who demonstrated that the technique was sufficiently sensitive  
to detect surface loss of 0.1 mm per year over a four-year period. More 
recent work has pointed out the importance of human interpretation in 
close-range photogrammetry (Inkpen, Collier, and Fontana 2000) and has 
shown how to combine laser scans with close-range photogrammetry 
(Ressl 2007).

Asmus and co-workers (1973) were among the first to propose 
the use of laser interferometry to monitor surface loss in stone. The tech-
nique has now been developed to the point where deformations as small 
as 0.5 microns can be detected. Laser profilometry has also been used to 
quantify changes in surface roughness due to laser cleaning (Colombo et 
al. 2007). Meinlschmidt and others (1992; 1998) have demonstrated the 
use of a portable system based on electronic speckle pattern interferome-
try (ESPI) or video holography. They were able, for example, to monitor 
deformations that took place during the hardening of a mortar or the 
growth of efflorescence over a period of just a few days. Recent advances 

http://www.southampton.ac.uk/archaeology/acrg/acrg_research_PTM_amazon.html
http://www.hpl.hp.com/news/2004/jan-mar/ptm.html
http://www.southampton.ac.uk/archaeology/acrg/acrg_research_PTM_amazon.html
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have made such systems less expensive and more practical in field condi-
tions (Keene and Chiang 2009). 

Many stone decay processes can be evaluated by focusing on 
solution chemistry and mineral reactions. Microcatchment studies are a 
useful way to evaluate the chemical dissolution of stone surfaces, where 
the ions in rain runoff are measured to evaluate reaction rates (Halsey 
2000). Finally, atomic force microscopy (AFM) and vertical scanning 
interferometry (VSI) have been used to monitor mineral reactions and the 
effects of biodeterioration (Davis and Lüttge 2005; Perry, McNamara, 
and Mitchell 2005; Herrera, Le Borgne, and Videla 2009). 

Looking Beneath the Surface 
Outward appearances may be sufficient in some instances, but they can 
be deceptive. It is not unusual to find a stone surface that looks perfectly 
sound but which sounds hollow when tapped. Sooner or later, we need a 
way of measuring what is going on beneath the surface. 

Many techniques are available and some of the more important 
are reviewed by Facaoaru and Lugnani (1993). These are typically divided 
into in situ field methods and laboratory-based methods. Lab tests are 
performed on collected samples or on samples subjected to accelerated or 
artificial weathering.

In Situ Field Methods
Preeminent among field methods is the use of ultrasonics to 

detect the presence of cracks, voids, and other inhomogeneities in stone 
(Mamillan 1991; Bläuer Böhm 2004). This may take a variety of forms, 
such as using the longitudinal wave or the transverse component run-
ning parallel to the surface. Galán and co-workers (1992) provide an 
early case study demonstrating the reliability and cost-effectiveness of 
the technique.

The transmission of ultrasonic waves in stone depends on many 
factors, and interpretation of the data is not necessarily straightforward. 
Valdeón, King, and De Freitas (1992) used digital analysis of the surface 
wave to demonstrate that wave attenuation can provide a sensitive mea-
sure of stone decay. The velocity of the longitudinal wave was a less sen-
sitive measure. Montoto, Valdeón, and Esbert (1996) have used ultrasonic 
tomography to investigate the internal deterioration of megaliths in 
northwestern Spain. The technique was useful for determining the posi-
tion of internal fissures but was less reliable at assessing the condition of 
stone immediately below the surface. Simon and co-workers (1994) have 
used formal concept analysis to optimize the interpretation of ultrasonic 
velocity measurements, while Mosch and Siegesmund (2007) correlated a 
large data set of physical stone properties with ultrasonic measurements. 
Weiss, Rasolofosaon, and Siegesmund (2002) found ultrasonic measure-
ments a useful method to measure degradation of marble from thermal 
cycling. However, because the presence of moisture can produce mislead-
ing results, it is critical that the marble be dry before ultrasonic measure-
ments are taken to ensure consistent results (Siegesmund, Weiss, and 
Rüdrich 2004). Ultrasonic testing has also been found useful for address-
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ing the difficult challenge of long-term evaluation of stone treatments 
(Simon and Lind 1999; Favaro et al. 2006; Favaro et al. 2007).

The development and application of the drilling resistance mea-
surement system (DRMS), also known as the drilling force measurement 
system (DFMS), has provided an extremely useful and minimally destruc-
tive method for evaluating the condition of stone and the performance  
of treatments for stone (Lotzmann and Sasse 1999; Leroux et al. 2000; 
Delgado Rodrigues, Ferreira Pinto, and Rodrigues da Costa 2002; 
Pamplona et al. 2008). The system uses a portable drill and ceramic drill 
bit with a sensor to measure the force needed to advance the drill bit a 
given distance. In principle, the DFMS can determine depth of deteriora-
tion and the penetration depth of consolidants, in situ, with a minimum 
of destruction (a 3 mm hole). 

Ground-penetrating radar is increasingly used in archaeological 
prospecting, and it is natural that its use should be extended to historic 
buildings (Finzi, Massa, and Morero 1992). It has seen wider application 
recently by a number of researchers (Binda et al. 2003; Binda, Lualdi, and 
Saisi 2007; Huneau et al. 2008; Palieraki et al. 2008). The method is use-
ful in detecting flaws, voids, moisture, metal straps, and the thickness of 
stone masonry. 

Infrared thermography has been used by a wide range of 
researchers (Moropoulou, Avdelidis, and Theoulakis 2003; Grinzato et al. 
2004; Tavukçuoglu et al. 2005) to study moisture in stone. To provide 
useful results, a thermal contrast, such as solar heating or deliberate heat-
ing by infrared lamps, is often needed to identify the different surface 
temperatures related to differences in moisture content. This method is 
known as photothermal radiometry and has been developed to detect 
delaminations and voids (Madrid, Coffman, and Ginell 1993; Candoré et 
al. 2008). Most building materials have significant thermal inertia, and 
practitioners using thermography on a casual basis will not necessarily 
find useful temperature contrasts. 

One interesting way to look into a stone’s subsurface for small 
surface detachments is to use the sensitivity of laser holography interfer-
ometry in combination with varying sound vibrations from a loud-
speaker to map detached segments of wall paintings or stone surfaces 
(Castellini et al. 2003; Gulker, Hinsch, and El Jarad 2004; Keene and 
Chiang 2009).

A range of field evaluation methods has proven useful for quanti-
fying water uptake and surface coherence, including the sponge and 
Scotch tape tests (Urzï and De Leo 2001; Vergès-Belmin and Laboure 
2007; Vandevoorde et al. 2009).

Laboratory-Based Methods 
So far, we have considered minimally destructive techniques. It is, 

of course, possible in some instances to remove samples for analysis in 
the laboratory. These will often consist of core samples, which are sliced 
parallel to the original surface. The slices may be examined using the nor-
mal techniques for characterizing stone, such as polarized light micros-
copy, scanning electron microscopy combined with energy- dispersive 
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spectroscopy, hygric tests, and biaxial flexural strength measurements 
(Mamillan 1991; Snethlage, Wendler, and Sattler 1991; Bläuer Böhm 
2004). Surface hardness measurements may be useful, and the salt con-
tent of the slices may also be determined (Bläuer Böhm 2005). 

The European Commission (EC) projects COMPASS and 
DESALINATION have developed a simple test for salt content based  
on the hygroscopic moisture content (HMC) (Gonçalves and Delgado 
Rodrigues 2006; Gonçalves, Delgado Rodrigues, and Abreu 2006; 
Nasraoui, Nowik, and Lubelli 2009). Kaminski (2008) has proposed an 
alternative gravimetric system and makes some constructive criticisms  
of common aspects of the diagnosis and analysis of moisture and salts, 
including misleading readings from moisture meters based on electrical 
resistance or dialetric properties, dry drill powders showing lower than 
expected results, and salt solution–conditioned chambers not providing 
consistent conditions for HMC measurements. 

Jacobs, Sevens, and Kunnen (1995) proposed the use of comput-
erized X-ray tomography (CT) to gain further insight into the internal 
structure of stone and the changes that occur during the deterioration of 
building materials. Procedures were developed to bring the resolution 
down to grain-size level (about 100 microns or less). Mossotti and 
Castanier (1990) used CT scanning to show that for Salem limestone, 
capillary water reached the surface except under windy conditions, when 
the air/water interface moved into the stone. In the past decade, resolu-
tion of the CT method has advanced significantly (Bugani et al. 2008; 
Cnudde et al. 2009; Ruiz de Argandoña et al. 2009); however, it is still 
difficult to see treatments and salts inside pores owing to the lack of  
contrast and the small amount of material scanned. A promising way to 
overcome the limitations of x-ray CT is the use of high-speed neutron 
tomography (synchrotron radiation) for in situ dynamic analysis of wet-
ting/drying, moisture transport, salt development, or the curing and eval-
uation of protective coatings and consolidants within a porous stone 
(Vlassenbroeck et al. 2007; Cnudde et al. 2008). 

The linear variable differential transformer (LVDT; also known  
as a linear velocity displacement transducer) has also proven to be an 
important lab tool in the quantitative evaluation of the thermal and 
 hygric response of building materials to wetting and humidity cycles, 
measuring expansion and contraction behavior on a micron scale 
(Martin, Röller, and Stöckhert 1999; Lombardo, Doehne, and Simon 
2004; Poupeleer et al. 2006). 

Nuclear magnetic resonance (NMR) imaging (also known as 
MRI) of building materials has advanced rapidly in the last fifteen years. 
This method allows the measurement of hydrogen and sodium ions in 
solutions present inside porous materials and has provided an important 
new dimension for understanding the behavior of moisture in building 
materials, especially at the millimeter to centimeter scale (Pel, Kopinga, 
and Brocken 1996; Pel, Huinink, and Kopinga 2002; Rijniers et al. 2004; 
Huinink et al. 2006; Gonçalves, Pel, and Delgado Rodrigues 2009). For 
example, when a stone has finer pores than an overlying plaster, NMR 
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has shown that if both layers are fully saturated with water at the start of 
a drying experiment, the stone will dry after the plaster and soluble salts 
in the stone will tend to be retained. 

All the Information We Need? 
With such sophisticated forms of investigation being pursued, one might 
be forgiven for thinking that no problems remain in the measurement of 
stone decay. There is, however, a long way to go. Stone decay is a com-
plex phenomenon, and no single technique can disentangle and quantify 
its causes and effects. Advances in experimental work, field measure-
ments, and theory—each building on the other—are still needed. The 
techniques that we have looked at thus far are certainly useful, but  
the methodical measurement of decay and our understanding of decay 
processes over time have not yet met the goal set forth earlier of conser-
vation decisions being based on measurements instead of assumptions. 

CAUSES OF DECAY 

Before we can take any action to prevent or to remedy the deteriora- 
tion of stone, we must understand what is causing that deterioration. 
Sometimes the cause is obvious; sometimes there may be several differ-
ent causes acting at once. In an attempt to clarify the relative impor-
tance and interdependency of individual causes, Verdel and Chambon 
(1994) have introduced the principles of system dynamics.1 Stone decay 
mechanisms and rates are reviewed in the proceedings of two Dahlem 
meetings (Doehne and Drever 1994; Viles 1997), and both reports point 
out areas where additional research is needed, essentially providing use-
ful road maps for research. An interesting example of quantifying the 
relative importance of a range of factors—in this case for absorption 
and desorption of moisture—is the careful research by Sawdy (1995; 
2002). She found, for example, that for environmental control of salt 
decay in wall paintings, relative humidity (RH), airflow, substrate type, 
and temperature are important factors, while earlier research had 
emphasized only RH. 

Some of the causes of stone decay are sudden and rapid in their 
effect. Those toward the latter part of the following list are slow and 
more insidious: earthquake, fire, flood, terrorism, vandalism, neglect, 
tourism, previous treatments, wind, rain, frost, temperature fluctuations, 
chemical attack, salt growth, pollution, biodeterioration, intrinsic factors, 
and so on. 

The literature includes many papers dealing with the causes of 
decay and some reviews are available, e.g., Ashurst and Dimes 1998; 
Honeyborne 1998; Grassegger 1999; Feilden 2003; Smith, Gómez-Heras, 
and McCabe 2008. Goudie and Viles (2008) trace the remarkable history 
of the study of physical, chemical, and biological weathering. Recent lit-
erature is dominated by three topics: air pollution, salts, and biodeterio-
ration. These are considered in the following sections.
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Air Pollution 
Air pollution is, to the minds of many, the prime culprit in stone decay. 
Everyone has heard of acid rain, and it is easy to conjure up an image  
of old buildings slowly dissolving in the rain. Needless to say, the true 
 situation is a good deal more complex, as reviews of the role of air pollu-
tion and soiling in stone decay have found (Charola and Ware 2002; 
Mitchell and Searle 2004; Brimblecombe and Grossi 2007; Siegesmund, 
Snethlage, and Ruedrich 2008). The emphasis of these studies has largely 
been on limestone, marble, lime mortars, and carbonate-cemented 
 sandstones, as these are the most vulnerable to acidic pollution. However, 
soiling from atmospheric particulates is a universal problem for all types 
of stone. 

Until recently, all the attention was given to the direct effects of 
air pollutants on stone, and research focused on the “traditional” pollut-
ants: sulfur oxides, nitrogen oxides, and carbon dioxide. All are naturally 
occurring, although human activity has greatly increased the amounts 
that are to be found in urban areas, as well as significantly increasing 
background levels of pollution in rural areas. All are capable of dissolv-
ing in water to create an acidic solution and so are capable of reacting 
with calcareous materials. 

The direct effects of air pollution on stone received enormous 
attention from the mid-1970s to the early 1990s. This is due, at least in 
part, to concerns about the effects of pollution on health, agriculture, and 
the environment. Stone research in Western Europe and the United States 
was able to ride on the back of these concerns and to benefit from the 
funding of large research programs.2 

Since the early 1990s, priorities have shifted as progress has  
been made in reducing sulfur dioxide (SO2) levels in major metropolitan 
areas in Western Europe and the United States. Consequently, funds for 
research on air pollution on stone have steadily decreased and a number 
of larger programs have been discontinued altogether. Infrastructure and 
research groups, originally dependent on these large programs for the 
development of laboratories and funding for students, must now try to 
survive where there is no longer any state-supported program of research. 
Germany, for example, has had no federal support for stone conservation 
research since 1998. 

In spite of the funding decrease, several conferences over the past 
decade have addressed important open questions regarding the impact  
of air pollution on rates of stone soiling and decay. One grew out of a 
EC-funded project3 (Saiz-Jimenez 2004). Another set of conferences 
grew out of SWAPNET (Stone Weathering and Atmospheric Pollution 
Network), a group of researchers focused on the topic of stone decay  
in polluted environments that started meeting at University College 
London in the late 1980s. Since 1993 SWAPNET has held twelve meet-
ings, mostly in the UK (Jones and Wakefield 1999; Mitchell and Searle 
2004; Smith and Warke 1996). The most recent SWAPNET meeting was 
in Malta in 2007 (Gómez-Heras 2007), which reported progress in under-
standing the rapid decay of certain stones affected by air pollution. 
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Damage to stone by air pollution is still an important problem in 
parts of central Europe, China, India, Russia, and other industrialized 
regions (Larssen et al. 2006). For example, while scrubbers were installed 
to reduce SO2 near the Taj Mahal, a lack of water, power outages, and the 
corresponding use of diesel generators were found to reduce the effective-
ness of the scrubbers and decrease air quality near the site. This outlines 
the importance of infrastructure development to monument health 
(Hangal and Harwit 1997). In the past decade the rapid development of 
India and China’s economies has in some measure been built on burning 
coal. This raises concerns for human health and corresponding concerns 
for well-known monuments, through both the direct and indirect effects of 
pollutants (Xingang Liu et al. 2008; Thakre, Aggorwal, and Khanna 1997; 
Zhao et al. 2007). 

There is a general perception that air pollution is a modern prob-
lem, but Brimblecombe (1992; 2001) has shown that it is a problem that 
dates from antiquity. By examining the effects of pollution on individual 
historic buildings over periods of several hundred years, he has also 
attempted to correlate pollution levels with observed damage. This links 
in with another widespread perception: that decay rates are accelerating 
rapidly, despite falling levels of several major pollutants. There are insuffi-
cient data to prove conclusively whether this is indeed the case. It is pos-
sible that the perception is due largely to an increasing public awareness 
of the problem and to the fact that stone loss through pollution is cumu-
lative. Also, the reaction products of air pollution, such as soluble salts, 
often remain on sheltered stone surfaces and result in ongoing damage. 

The direct effects of acidic pollutants on calcareous stones depend 
very much on the immediate environment of the stone. If the stone is in 
an exposed position where it is regularly washed by rain, the reaction 
products are washed away and the surface of the stone gradually recedes. 
If, however, the stone is in a relatively sheltered position, the reaction 
products accumulate and may form dense black crusts on stone surfaces. 

A great deal of research, particularly in Italy, has been concerned 
with the nature and the origins of the black crust (Camuffo et al. 1982; 
Del Monte 1992; Fassina 1992; Ausset et al. 1992). These studies have 
shown that carbonaceous particulate pollution resulting from the com-
bustion of fossil fuels in electrical power generation is responsible for the 
blackness of the crust. More important, however, is the discovery that  
the particles are not passive prisoners in the crust: they contain metal 
oxides that catalyze the oxidation of sulfur dioxide and hence promote 
formation of the crust in the first place (McAlister, Smith, and Török 
2008). While greater attention has now been paid to treating or removing 
these crusts, current research on black crusts has largely confirmed the 
earlier studies. Isotopic analysis has been useful in isolating the generally 
anthropogenic sources of black crust (Přikryl et al. 2004; Vallet et al. 
2006; Siegesmund et al. 2007). 

In an attempt to clarify the growth mechanism, Schiavon (1992) 
has studied the “stratigraphy” of black crusts. He concludes that growth 
occurs in two directions: inward and outward with respect to the original 
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stone surface, but with inward growth predominating. Vergès-Belmin 
(1994) proposed a three-step process to explain the inward and outward 
formation of the black crust, making a distinction between a clear gyp-
sum layer, growing inward through pseudomorphic replacement, and a 
dark one, which is a deposit, thus developing on the surface of the stone 
and growing outward. Work by Toniolo, Zerbi, and Bugini (2009) divides 
black crusts into three types, with marble substrates exhibiting differen-
tial preservation beneath each type. 

While the vast majority of research on black crusts has focused 
on carbonate stone, interesting research on silicate stones has found high 
sulfation rates associated with diesel soot and accelerated rates of granite 
kaolinization associated with black crusts (Simão, Ruiz-Agudo, and 
Rodríguez-Navarro 2006; Schiavon 2007). In certain cases, black crusts 
forming on granites appear to be geochemically unrelated to the substrate 
and are thus accumulated from atmospheric (Silva et al. 2009) and bio-
genic sources (Aira et al. 2007).

Diakumaku and others have observed that some black fungi pro-
duce small spherical particles that might, under some circumstances, be 
confused with fly ash (1995). Microflora are also capable of producing 
sulfates. In the opinion of these authors, the formation of some black 
crusts in unpolluted environments may be attributable to biological fac-
tors. In addition, Ortega-Calvo and co-workers (1995) have demonstrated 
that sulfate crusts may provide an ideal habitat for some cyanobacteria 
through the gradual dissolution of the sulfate. Work by Mansch and Bock 
(1998) found greater concentrations of nitrifying bacteria and greater 
stone decay rates associated with air pollution and black crusts. Gonzales-
del Valle and others (2003, 219) have found that “building stones host an 
active microflora that degrades fossil fuel derivatives.” Schiavon, Chiavari, 
and Fabbri (2004) found organic compounds, such as polycyclic aromatic 
hydrocarbons (PAHs), which appear to represent markers for present- 
day vehicular pollution, on the limestone walls of Emmanuel College, 
Cambridge, UK. It seems likely that the accumulation of PAHs (Hermosin, 
Gaviño, and Saiz-Jimenez 2004) provides a food source for microbial 
communities (Saiz-Jimenez 1995; also see biodeterioration section). 
Despite the extensive research already carried out on black crusts, our 
understanding is not yet complete. 

Another important area of research has been centered on the rate 
of decay attributable to pollutants and on the likely effect of reductions 
in pollution levels—a crucial issue for policy makers. For example, what 
would be the overall savings in building maintenance costs if sulfur 
 dioxide levels were reduced by 10 or 20 percent? Several authors have 
addressed this issue through the use of damage functions, which are 
mathematical expressions that attempt to express the rate of stone decay 
as a function of several different variables. Although the damage func-
tions  differ in detail, a fairly consistent overall picture emerges (Lipfert 
1989; Reddy 1990; Benarie 1991; Butlin et al. 1992; Livingston 1992; 
Webb et al. 1992; Meierding 1993; Livingston 1997; Viles et al. 1997; 
Schreiber and Meierding 1999). The rate of decay depends largely on 
three factors: pollution levels, rainfall acidity, and amount of rainfall. 



 Stone Decay 13

PROOF    1  2  3  4  5  6

Some intriguing findings have led to a better understanding of the inter-
play between material, environment, and weathering rates: for example, 
tropical weathering has been found to be less detrimental to marble 
tombstones than an acidic, polluted atmosphere (Meierding 1993, 2000). 

Some authors argue that sulfur dioxide levels in certain cities 
have decreased to the point where sulfur dioxide is no longer a major 
contributor to decay. In other words, there may be a “safe level” of 
around 30 μg/m3, below which sulfur dioxide is not a significant contrib-
utor to decay (Sharma and Gupta 1993).4 This view is not universally 
upheld, with some experts finding that for many pollutants there is no 
safe threshold and that resulfation of cleaned monuments is proceeding 
apace in some places.5

One area where consensus is emerging is in the relative impor-
tance of wet and dry deposition. Where sulfur dioxide levels are high 
(urban areas), dry deposition appears to predominate on vertical surfaces. 
On horizontal surfaces and in rural areas, wet and dry deposition may  
be of comparable importance (BERG 1989; Butlin 1991; Furlan 1992; 
Cooke and Gibbs 1993; Charola and Ware 2002). According to Grossi 
and Murray (1999), stones with a high specific surface area and/or a deli-
quescent salt content were found to promote more nitrogen oxides (NOx) 
dry deposition. 

Some recent findings concerning the effects of air pollution have 
been unexpected, such as the observation of a decrease in dissolution 
from stone surfaces blackened with diesel soot as measured in micro-
catchment studies, apparently due to a higher mean surface temperature 
resulting in faster drying (Searle and Mitchell 2006). This counterintuitive 
result suggests the importance of “time of wetness” in the damage to 
stone, as confirmed by earlier research (Charola and Ware 2002). Recent 
decay of marble in New York was evaluated using mass balance methods 
sensitive enough to detect a 2 nm surface loss (Livingston 2008). 
Dissolution was found to be mostly due to gypsum dissolution originat-
ing from dry deposition with less contribution from karstic processes due 
to carbonic acid or from neutralization of acid rain. This result is in con-
trast to earlier US National Acid Precipitation Assessment Program 
(NAPAP) studies, which found carbonic acid responsible for approxi-
mately 70 percent of carbonate dissolution (Baedecker and Reddy 1993). 

Despite significant cleaning campaigns in many European capi-
tals, the soiling rates of historic structures remain high, apparently due to 
a substantial increase in diesel emissions (Grossi et al. 2003; Searle and 
Mitchell 2008). Recommendations for human health and monument 
health include increasing the distance between diesel emissions and 
important sites such as schools and monuments (Nord and Holenyi 1999; 
Sagai, Furuyama, and Ichinose 1996; Qinghua Sun et al. 2005). 

What are the issues that have still to be addressed? They include 
the following:

•	 What	is	the	role	of	high	nitrogen	oxide	levels	on	stone	decay?	
The substantial increase in vehicular emissions of nitrogen 
oxides (NOx) has not resulted in acid attack on the same scale 
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as SO2. Yet despite several studies, the situation is still unclear. 
Some authors have found synergistic effects for NOx on SO2 
reactions, while others have not (Kirkitsos and Sikiotis 1995; 
Sikiotis and Kirkitsos 1995; Massey 1999; Searle and Mitchell 
2006; Allen 2007; Metaxa et al. 2009). It seems part of the 
issue is that a catalytic effect for NOx on SO2 is present in dry 
conditions, but not in wet (Bai, Thompson, and Martinez-
Ramirez 2006). In a larger context, research is showing that 
the geochemical cycle of nitrogen is being altered in ways, 
including the impact on historic stone, that are still poorly 
understood (Gruber and Galloway 2008). 

•	 What	is	the	mechanism	by	which	sulfur	dioxide	is	oxidized	to	
produce sulfuric acid? Does oxidation take place before the 
pollution reaches the stone, or is it catalyzed by other pollut-
ants on the surface of the stone? Is the oxidation catalyzed by 
other air pollutants, such as ozone, nitrogen oxides, or die-
sel soot (see, for example, Rodríguez-Navarro and Sebastian 
1996)? Do bacteria in the stone play a part? 

•	 To	what	extent	are	today’s	decay	rates	influenced	by	pol-
lution levels of the past (the memory effect)? For example, 
sulfate and nitrate salts that are already present in the stone 
will continue to cause damage even if further pollution were 
eliminated altogether. The “memory effect” story is not yet 
complete (Vleugels, Dewolfs, and Van Grieken 1993; Přikryl 
and Smith 2007). 

•	 Recent	research	has	examined	the	role	of	formates,	acetates,	
and airborne microbes (Kumar et al. 1993; Grossi et al. 2003; 
Gibson et al. 2005; Maruthamuthu et al. 2008). Are other 
important pollutants being overlooked? 

•	 What	are	the	relative	roles	of	carbonic	acid	versus	sulfuric,	 
nitric, or other acidic species? This is an issue that still remains 
controversial (Baedecker and Reddy 1993; Charola and 
Ware 2002). 

More recently, the focus has shifted away from the direct effects 
of pollutants to their indirect effects. Carbon dioxide, generally regarded 
as a minor culprit where direct effects are concerned, now takes center 
stage. It is regarded as the primary cause of climate change, and the 
impact of climate change on the built heritage may far exceed the direct 
effects of pollutants—severe though they may be. 

International concern over climate change and global warming 
continues to grow. Because the impact on people is the primary concern, 
it is easy to think that stone monuments will be immune to global warm-
ing of just a few degrees. This is not the case, however, and recent studies 
have started to demonstrate the widespread impacts of climate fluctua-
tions such as floods, droughts, and humidity cycles (http://noahsark.isac 
.cnr.it/) (Cassar 2005; Sabbioni et al. 2006). For example, concern has 
been expressed that an increase in biodeterioration of stone in Scotland 
can be expected due to higher temperatures and rainfall (Duthie et al. 
2008). And in central Europe, the yearly number of humidity fluctuations 

http://noahsark.isac.cnr.it/
http://noahsark.isac.cnr.it/
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crossing the deliquescence point of sodium chloride (~75 percent RH) are 
projected to increase two- to four-fold by the end of the century due to 
drier summers, which is likely to increase damage from salt crystallization 
(Brimblecombe and Grossi 2007; Grossi et al. 2008). Climate change is a 
very real threat to our monuments and cannot be ignored. 

Salts 
Along with air pollution, soluble salts represent one of the most impor-
tant causes of stone decay. Salts cause damage to stone in several ways. 
The most important is the growth of salt crystals within the pores of  
a stone, which can generate stresses that are sufficient to overcome the 
stone’s tensile strength and turn the stone to a powder. The deterioration 
of many of the world’s greatest monuments can be attributed to salts, 
from Angkor Wat (Siedel, von Plehwe-Leisen, and Leisen 2008) to Venice 
(Lazzarini et al. 2008), and from Petra (Simon, Shaer, and Kaiser 2006) to 
the Great Sphinx of Giza (Reed 2002). 

There are many ways in which stonework can become contami-
nated with salts. Air pollution is a major source of sulfates and nitrates. 
Other sources include the soil, from which salts may be carried into 
masonry by rising damp; salts blown by the wind from the sea or the des-
ert; deicing salt; unsuitable cleaning materials; incompatible building mate-
rials; garden fertilizers; and, in the case of some medieval buildings, the 
storage of salts for meat preservation or even for gunpowder. 

The growth of damaging salt crystals is usually attributable to 
crystallization, caused by the evaporation or cooling of salt solutions 
within the stone. In the past, there was much reference to “hydration 
damage,” building on the fact that some salts can exist in more than 
one hydration state. The prime example is sodium sulfate, one of the 
most damaging of soluble salts, which can exist as the anhydrous salt 
thenardite (Na2SO4) or the decahydrate mirabilite (Na2SO4·10H2O) 
(Doehne 2003; Espinosa Marzal and Scherer 2008a). Thenardite increases 
in volume by more than three times on conversion to mirabilite, and it 
has been argued that this growth in volume was the cause of so-called 
hydration damage. However, it is now recognized that a crystal cannot 
magically transform from one form to the other without first dissolv-
ing and then recrystallizing in the new form. Hydration damage thus 
becomes a special case of crystallization damage (Doehne 1994; Flatt and 
Scherer 2002; Flatt 2006). Having said that, it is now becoming recog-
nized that the sodium sulfate system presents yet further challenges, with 
researchers demonstrating the crystallization of the metastable heptahy-
drate (Na2SO4·7H2O) in preference to mirabilite in some circumstances 
(Hamilton, Hall, and Pel 2008; Saidov and Pel 2008).

Salt damage does not occur only in an outdoor environment, 
where the stone is subjected to cycles of rainfall and subsequent drying. It 
can also take place indoors, through the hygroscopic action of the salts. 
Severe damage to stonework held in uncontrolled museum environments 
is not uncommon (Hanna 1984; Rodríguez-Navarro et al. 1998). 

On first sight, it appears surprising that salt damage should occur 
at all. Crystallization, for example, results in the formation of crystals 
that occupy a smaller volume than the solution from which they have 
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been deposited. Is there not ample room for the crystals to develop in  
the pores, without the necessity of forcing the pore walls apart? However, 
this simplistic view overlooks the dynamic aspects of stone decay (Yu and 
Oguchi 2009). A stone may be fed constantly with salt-bearing moisture 
from the soil, for example, so that salts are constantly accumulating at 
the point of evaporation. Detailed analyses of this situation are given by 
Lewin (1982) and by Hall and Hoff (2007) and in a useful new book 
by the Italian engineer Edgardo Pinto Guerra, Risanamento di murature 
umide e degradate (Restoration of Damp and Deteriorated Masonry 
Walls) (2008). Work in Rhodes shows that the amount of salt is cor-
related to the severity of damage to the stone (Stefanis, Theoulakis, and 
Pilinis 2009). 

Several tables of salt levels that are considered potentially 
hazardous for porous materials have been published in Germany 
(Wissenschaftlich-Technische-Arbeitsgemeinschaft für Bauwerkserhal-
tung und Denkmalpflege e.V. 1999), Austria (Österreichisches 
Normungsinstitut [ON] 2006), and France (Ministère de la culture et de 
la communication 2003). Simply measuring the concentration of salt in 
stone captures only part of the issue, since substrate characteristics (resis-
tance to salt weathering) as well as the severity and frequency of envi-
ronmental fluctuations are important in determining rates of salt damage 
(Doehne 2002). Any proposed international norm for salt levels in porous 
materials would have to take these factors into account, in addition to 
addressing the issue of identifying a method for measuring salt levels in 
building materials that is less costly than ion chromatography. 

Modeling by Hall, Hoff, and Hamilton (2008) shows that in the 
UK rising damp can typically transport several hundred liters of moisture 
per year, per linear meter of stone, which can easily result in the accumu-
lation of salts even from dilute groundwater solutions. The accumulation 
of salts and whether they crystallize on the surface or as a subflorescence 
has been related to the interfacial properties (wetting) and to the trans-
port properties of the liquid. For example, De Witte (2001) and Miquel 
and others (2002) have clearly shown that subflorescence can develop at 
the interface between treated and untreated stone, and subsequent con-
tour scaling can be due to the presence of water repellents. In lab experi-
ments, Shahidzadeh and others (2008) have confirmed that interfacial 
properties are of key importance for where and how the crystals form. 
Pel, Sawdy, and Voroninaa (2010) have described the Peclet number6 as a 
useful parameter that relates the rate of advection of a flow to its rate of 
diffusion in building materials. When advection dominates, salts will tend 
to accumulate at the surface of a stone. When diffusion dominates, ions 
will be more widely distributed. 

There have been major advances in our understanding of salt 
weathering over the past fifteen years (Rodríguez-Navarro and Doehne 
1999), although research into ways to prevent, mitigate, and treat the 
problems has lagged somewhat behind. The first big advance is related to 
the behavior of solutions containing more than one salt—the situation 
that is almost invariably found in practice. It is a straightforward process 
to predict the environmental conditions under which a single salt will 
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pick up moisture from the air and subsequently lose it (causing damage 
by crystallization). However, the conditions under which salt mixtures 
will cause damage are much more difficult to predict and entails thermo-
dynamic modeling. This work has advanced in several steps (Steiger and 
Zeunert 1996; Price 2000; Steiger 2006; Sawdy and Heritage 2007; De 
Clercq 2008; Franzen and Mirwald 2009). In an example that highlights 
the importance of understanding material behavior, recent work has 
shown that the type of salt is critical in determining if damage may 
occur. A pillar at Angkor Wat with severe erosion at its base was found 
to contain the same amount of salt in damaged and undamaged areas, 
leading to questions about whether salts were or were not the cause of 
the damage. Thermodynamic calculations subsequently showed that 
there were differences in the salt type present that explained the damage 
pattern, with highly hygroscopic salts that did not crystallize often being 
present in the undamaged zone and salts that crystallized frequently 
being present in the damaged zone (M. Steiger, personal communication). 
Computer programs can now predict the “safe” ranges of temperature 
and relative humidity in which crystallization damage may be minimized 
(Sawdy and Price 2005; Simon and Doehne 2006b; Price 2007; Steiger, 
Kiekbusch, and Nicolai 2008). Inevitably, there are limitations, the most 
important being that the programs can predict only what will happen 
under equilibrium conditions; they say nothing about the rate at which 
it will happen (Prokos and Bala’awi 2008). 

The second important area of research is concerned with the mech-
anism by which damage occurs. Some of the papers are quite daunting, but 
the ideas are essentially quite simple (Hamilton and Hall 2004; Espinosa 
Marzal and Scherer 2009). Consider a crystal bridging a pore and exerting 
a pressure on the pore walls. If it is to grow any further, and thereby do 
damage, it is necessary for the surrounding solution to be able to get in 
between the crystal and the pore walls. If the pressure gets so high that this 
solution is squeezed out, no further growth can occur and there will be no 
damage. There is therefore a tug of war (or perhaps “push of war” would 
be more appropriate) between various opposing forces related to the sur-
face energies of the respective stone/solution/crystal interfaces. As the 
 surfaces of the salt crystal and the pore wall get to within 10 nm or so, 
repulsive forces arise due to the mismatched surface energy of the mineral 
surfaces and this keeps them apart, much like what happens when an 
attempt is made to push two magnets together. This mismatched surface 
energy can be thought of as the degree of lattice compatibility or incompat-
ibility between two minerals. NMR, AFM, thermo-mechanical analysis 
(TMA), and environmental scanning electron microscopy (ESEM) have 
provided direct evidence of the existence of salt crystallization or disjoining 
pressure (Rijniers et al. 2005; Hamilton, Koutsos, and Hall forthcoming; 
Balboni et al. forthcoming) and the process has been modeled as well 
(Espinosa, Franke, and Deckelmann 2008). Future work on the calculation 
and measurement of the actual supersaturation that occurs in a porous 
medium at the exact moment of salt crystallization will help in understand-
ing the widespread variability in resistance of various building materials to 
salt weathering. Research is continuing using synchrotron X-rays, NMR 
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(Hamilton, Hall, and Pel 2008), and differential scanning calorimetry 
(DSC) (Espinosa Marzal and Scherer forthcoming). Some additional work 
on direct measurement of the disjoining pressure using AFM is also needed 
to help clarify some of these issues. 

The size of the substrate pores is important in salt weathering,  
as shown by measurements and models developed over the past decade 
(Scherer 1999, 2000; Steiger 2005a, 2005b). Under equilibrium condi-
tions, a crystallization pressure can only occur in the smallest pores (less 
than 30 nm) (Rijniers et al. 2005). Since most types of stone have few 
pores in this range, it is predicted that most salt weathering damage takes 
place during nonequilibrium conditions, such as rapid drying. Another 
way that damage increases is when the stone pores fill with salt, which 
modifies the pore size distribution, essentially creating small pores where 
crystallization pressure can occur, even under equilibrium conditions. This 
may help explain the sudden onset of some salt weathering problems, 
since damage may not start until the pores are full of salt. 

Other researchers have looked at the initial nucleation and 
growth stages of crystals in pores, with a view to inhibiting nucleation  
or modifying the shape and size of the crystals that form by using trace 
amounts of the chemicals commonly used to inhibit mineral scaling on 
pipes in industrial applications (Selwitz and Doehne 2002; Rodríguez-
Navarro, Hernandez, and Sebastian 2006; Cassar et al. 2008; Ruiz-
Agudo, Putnis, and Rodríguez-Navarro 2008). In some ways it is a risky 
strategy, for it has long been known that crystallization pressure is related 
to the degree of supersaturation of the solution from which the crystals 
grow. If nucleation is inhibited or postponed, this will lead to even higher 
levels of supersaturation, so that damage (if and when it does occur) may 
be more severe than it might have been. Modifiers may also behave differ-
ently when in solution than when absorbed to stone surfaces. 

A further aspect of recent research concerns the role of wind in 
salt weathering or alveolar weathering.7 The formation of alveolar or 
honeycomb weathering patterns is apparently due to the preferential 
accumulation of salt in sheltered hollows, where it was not washed away 
by rain as it would be in the ridges surrounding the hollows, and the 
 protective effects of endolithic microbes (Laue et al. 2005; Siedel 2008; 
Mustoe 2010). The hollows are the last place to dry, and thus the place 
where salts tend to accumulate. Also, the ridges would generally be dry, 
while fluctuations in moisture in the depth of the cavity would result in 
cycles of salt crystallization and further erosion at the deepest point of 
the cavity. The main source of salts is thought to be wind-borne dust 
from nearby playas or sea-salt aerosol (Kirchner 1996). 

Early laboratory work on wind’s effect on stone showed that  
the boundary between air-filled pores and solution-filled pores in a  
stone could be moved into the sample by placing a fan facing the stone 
(Mossotti and Castanier 1990). Thus, the location of salts (efflorescence 
or subflorescence) is due in part to the rate of air exchange at the surface 
of the material, and windy conditions can result in the crystallization of 
salts as a more damaging subflorescence, rather than as a surface efflores-
cence. More recent modeling indicates that the development of a uniform 
erosion pattern or a honeycomb pattern of weathering may be explained 
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by differences in the duration of drying periods (Huinink, Pel, and 
Kopinga 2004). The researchers found that short drying periods tend to 
result in the accumulation of salts on the surface (resulting in more uni-
form erosion). For longer drying periods (slow evaporation rates), salts 
accumulate in sheltered areas with lower evaporation rates (tending to 
expand pits and resulting in honeycomb patterns). Experimental labora-
tory work has also shown that wind (Selwitz and Doehne 2002) and 
related rapid drying (Lombardo, Doehne, and Simon 2004) increases 
damage rates due to increases in salt supersaturation, and that variable 
weathering rates related to wind can result in honeycomb patterns 
(Rodríguez-Navarro, Doehne, and Sebastian 1999). Recent modeling of 
the effect of wind on the Sphinx found that areas of rapid erosion corre-
lated with areas of high wind friction and enhanced drying (left shoulder 
and the top of the haunches) (Hawass 1998; Hussein and El-Shishiny 
2009). Lab experiments and work at sites such as Petra in Jordan show 
that wind speed strongly influences the rate of damage and pattern of salt 
distribution (Bala’awi 2008). Pore blocking by salts also appears to be  
an important factor in controlling the pattern of salt weathering damage 
(Espinosa Marzal and Scherer 2008b; McCabe, McKinley, and Smith 
2008; Espinosa Marzal and Scherer forthcoming) and may result in 
greater crystallization of salts as subflorescence. 

Is crystallization the only way in which salts can cause damage? 
It seems not. It appears that they can also cause damage through stress 
from differential thermal expansion, since sodium chloride, for example, 
expands at about five times the rate of calcite at surface temperatures 
(Nocita 1987; Holmer 1998; Smith et al. 2005). Schaffer (1932) attrib-
uted this idea to Scott Russell. Salts also have a role to play in the weath-
ering of stones that contain clay minerals (Snethlage and Wendler 1997; 
Rodríguez-Navarro et al. 1998; Scherer 2006; Scherer and Jiménez-
González 2008), in some cases enhancing the swelling potential of these 
stones. While most of the damage from salts is physical, work shows that 
salt solutions enhance the dissolution of calcite (Ruiz-Agudo, Martín-
Ramos, and Rodríguez-Navarro 2007) and the alteration of biotite  
(Silva and Simão 2009), quartz (Young 1987), and feldspars (Bernabe, 
Bromblet, and Robert 1995). And while one might expect salt weathering 
to have little in common with biodeterioration, recent work has found 
that halophilic bacteria are often present and may enhance physical dam-
age mechanisms (Laiz et al. 2000; Papida, Murphy, and May 2000).

There are several recent reviews that give further details of 
research in this area. They include a thoughtful overview of the role  
of salts in the deterioration of porous materials by Charola (2000) and 
an excellent discussion of salts and crusts by Steiger (2003). Doehne 
(2002) reviews the scope and interdisciplinary nature of salt weathering 
in a paper that brings in perspectives from conservators, geomorpholo-
gists, and cement specialists. Simon and Doehne (2006a; 2006b) summa-
rize a series of discussions and expert papers on salt weathering and 
masonry desalination. A special issue of the journal Environmental 
Geology was devoted to salt decay with three groups of papers devoted 
to salt weathering tests, salt behavior, and field studies (Steiger and 
Siegesmund 2007). A detailed summary of the fundamental basis of salt 
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decay mechanisms can be found in Scherer (2004). “Salt Weathering on 
Buildings and Stone Sculpture” conferences were held in Ghent in May 
2007 and in Copenhagen in October 2008 (Albertsen 2008); the next 
conference will take place in Cyprus in October 2011. Finally, a recent 
review of salt weathering calls for new field research on building material 
behavior and soluble salts (Gulotta et al. 2008). 

Closely related to the issue of salt damage is the issue of damage 
from frost. The topic has been reviewed by Scherer and Valenza (2005) 
and Matsuoka and Murton (2008). In France, the standard on frost resis-
tance of natural stone (Norm XP B 10-601, see LERM 2006) gathers all 
the tests to be performed and gives the appropriate thresholds, according 
to the destination of the stone in the building and according to local 
 climate. Created in 1984, the standard is regularly revised to fit with field 
observations and climate change. 

Inevitably, further questions remain. Why are certain types of 
stone much more vulnerable than other types to salt damage? Why are 
certain salts much more damaging than others? Is damage caused mostly 
by relatively rare environmental events (rapid cooling, drying, or conden-
sation) or cumulative everyday stresses (humidity cycling)? What are the 
long-term effects of various conservation treatments, such as desalination 
or consolidation, on salt damage? How can desalination and preventive 
conservation efforts be enhanced? Can general agreement be achieved 
regarding the fundamental mechanisms of salt weathering? Can the salt 
damage process and weathering forms such as tafoni be accurately mod-
eled using existing knowledge? How does the hydration of salts progress, 
and how are crystallization pressures sustained in situ? And, above all, 
how can the great fundamental strides of recent years be converted to 
practicable applications? 

Biodeterioration
In 1932, in his classic report The Weathering of Natural Building Stones, 
Schaffer wrote: 

Living organisms also contribute to the decay of stone 

and similar materials and, although their action is, generally, of 

somewhat less importance than certain of the other deleterious 

agencies which have been considered, their study presents 

numerous features of interest. The effect of certain organisms, 

such as bacteria, is still a matter of controversy, but the effect of 

others, such as the growth of ivy, is generally considered to be 

detrimental.

In two of these areas, he is still remarkably up to date. There is contro-
versy over the role of bacteria, and we still need to weigh the importance 
of biodeterioration against the importance of other causes of decay. 
However, recent work on ivy suggests that the shade and thermal stability 
provided by ivy on stone walls may be beneficial in certain situations 
(H. Viles, personal communication; see also: http://www.srs.ac.uk/ 
scienceandheritage/presentations/Ivy_presentation2.pdf). 

http://www.srs.ac.uk/scienceandheritage/presentations/Ivy_presentation2.pdf
http://www.srs.ac.uk/scienceandheritage/presentations/Ivy_presentation2.pdf
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Biological growths on stone are both a blessing and a blight. 
Colorful lichens and creepers, such as ivy, can contribute an air of age 
and romance to a monument, and their removal can leave the stone look-
ing stark and denuded. Nevertheless, many organisms contribute to the 
deterioration of stone, and it is necessary to find the right balance 
between appearance and longevity. The discussion surrounding this topic 
has become more complex and nuanced, as evidence has accumulated 
that complex biofilms in some situations may help to stabilize fragile 
stone surfaces and in other cases may strongly accelerate decay (Uchida et 
al. 2000; Chiari and Cossio 2004; Caneva et al. 2005; De Muynck, De 
Belie, and Verstraete 2010). For example, in laboratory experiments, bio-
films have been shown to result in a 40–70 percent decline in dissolution 
rates of calcite (Davis and Lüttge 2005). In more recent work, the contri-
bution of bacteria to dissolution or protection has been related to the 
amount and type of “food for microbes” present, such as nitrate versus 
ammonium ions and organic carbon species (Jacobson and Wu 2009). 
Research on the action of biofilms on silicate stones (granite and basalt) 
has shown they may enhance dissolution rates in some situations (Wu et 
al. 2007; Wu, Jacobson, and Hausner 2008). While additional work is 
needed, research in this area suggests that some surface patinas may be 
an effective natural protection for carbonate stones, while other biofilms, 
particularly in polluted environments, may be deleterious. 

Bioremediation and biocides are related topics of recent research 
that are discussed later in the section on surface treatments in chapter 2. 

The biological degradation of rocks is well known and has been 
studied for a long time: it is one of the weathering mechanisms responsi-
ble for the formation of soil. The deterioration of stone in buildings and 
monuments through the action of biological organisms has also been 
acknowledged since the mid-1960s, but the topic has received increasing 
attention over the past decade. Some of the literature is concerned pri-
marily with the influence of organisms on the appearance of stone sur-
faces, while other research deals primarily with the deterioration of the 
stone itself. In the past, microbiologists studying this topic have tended to 
focus more on characterizing the species and ecosystems found on stone 
and less on the nature of the effects of biological agents on stone decay. 
This is changing with new research on how biofilms change the thermal, 
hygric, and mechanical behavior of stone, thus enhancing decay by 
increasing the duration of surface wetting and providing a source of 
organic acids and complexing agents. 

Excellent reviews of the topic are provided by Warscheid and 
Braams (2000); Caneva, Gasperini, and Salvadori (2008); Warscheid 
(2008); and Scheerer, Ortega-Morales, and Gaylarde (2009). Other useful 
overviews are given by Wakefield and Jones (1998); Ciferri, Tiano, and 
Mastromei (2000); and Crispim and Gaylarde (2005). A burst of earlier 
reviews can be found in Gómez-Alarcon and de la Torre (1994); Jain, 
Mishra, and Singh (1994); May et al. (1993); and Tiano (1994). 
Krumbein and Urzï (1992) have set out a comprehensive terminology for 
describing aspects of biodeterioration on stone. 
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Much of the recent research has been centered on algae, lichens, 
and bacteria. Adamo and Violante (2000); Jie Chen, Blume, and Beyer 
(2000); Schiavon (2002); Wilson (2004); St. Clair and Seaward (2004); 
and Piervittori, Salvadori, and Isocrono (2004) have reviewed the action 
of lichens, confirming that their effects are both physical and chemical. 
Mechanical damage is caused by penetration of the hyphae into the 
stone and by the expansion and contraction of the thallus (the vegetative 
part of the fungus) under changes of humidity. Chemical damage, how-
ever, is more important and may arise in three ways: by the secretion of 
oxalic acid, by the generation of carbonic acid, and by the generation  
of other acids capable of chelating ions such as calcium. Field examples of 
damage from lichens to stone monuments have recently been described in 
contexts ranging from Persepolis to the Alhambra palace and the 
Jeronimos Monastery (Mohammadi and Krumbein 2008; Sarró et al. 
2006; Ascaso et al. 2002). 

The secretion of oxalic acid, which reacts with a calcareous stone 
to produce calcium oxalate, is of particular interest. A number of authors 
have noted the presence of calcium oxalate on the surface of stone monu-
ments, where it can form part of a coherent and seemingly protective 
layer known as scialbatura. Del Monte and Sabbioni (1987), for example, 
have argued that scialbatura is caused solely by lichen activity, whereas 
Lazzarini and Salvadori (1989) have enumerated other possible causes, 
including the deliberate application of a protective coating. Correlating 
the environmental limits for lichen growth with the distribution of 
oxalate on Trajan’s Column, Caneva (1993) found that the oxalate dis-
tribution pattern was the opposite of that expected for lichens and thus 
lichens were perhaps not the best explanation for the column’s patina. 
Analysis of rock outcrops suggests that some oxalate patinas may be rel-
ics of past paleo-environments that were more suitable for lichen growth 
during an interval of greater surface moisture (Moore et al. 2000). 
Subsequent experimental work has shown that the alteration of an 
organic coating can result in the formation of calcium oxalate (Cariati et 
al. 2000). Analysis of oxalate patinas in the field has also provided sup-
port to the idea that microbial alteration of organic material contributes 
to oxalate formation (Casoli and Palla 2002). In addition, Monte (2003) 
has performed experiments showing oxalate can be produced by the 
action of fungi alone on marble. More on biomineralization can be found 
in chapter 2. 

Researchers have found a range of microbes that are endolithic—
colonizing the interior of porous stone (Walker and Pace 2007). There 
they take advantage of the light, moisture, and shelter found inside the 
stone (Caneva, Gasperini, and Salvadori 2008) and may also modify their 
surroundings (McNamara et al. 2006). It seems clear that the presence of 
endolithic communities should be assumed in many environments and 
stone types. Further study is needed of their role in stone alteration, their 
modification of moisture transport, and their interaction with conserva-
tion treatments such as consolidants and biocides. 

The heavyweight controversy is saved for bacteria. They have 
long been implicated in stone decay, but acceptance of their role has 
sometimes been hindered by the emotive stance of some researchers, who 
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have appeared determined to see bacteria and nothing else. A troubling 
number of authors have noted high numbers of bacteria in decaying 
stone, in comparison to low numbers in sound stone, and have concluded 
that the bacteria cause the decay. However, an alternative explanation 
could be that decayed stone presents a preferred habitat for the bacteria. 

Bacteria that attack stone chemically fall into two groups: auto-
trophic bacteria derive their carbon from carbon dioxide (CO2), and may 
derive their energy from light (photolithotrophs) or from chemical redox 
reactions (chemolithotrophs). Heterotrophic bacteria, by contrast, utilize 
organic compounds on the stone to derive their carbon. Autotrophic bac-
teria include those that are capable of oxidizing sulfur and nitrogen com-
pounds to produce sulfuric acid and nitric acid, respectively. They are one 
more means, therefore, by which air pollutants such as sulfur dioxide 
and nitrogen oxide are turned into sulfates and nitrates. This underlines 
the difficulty of separating out the individual causes of stone decay; sev-
eral different factors may play integral roles in the overall decay process.  
The question remains of whether bacteria or catalyzing metal com-
pounds, for example, are the main routes of sulfate production. How-
ever, if oxidation by both bacteria and metal compounds is rapid by 
comparison with the rate at which sulfur dioxide arrives at the stone 
surface, then the arrival rate will be the rate-determining step, not the 
route taken. The synergistic effects of air pollution and biofilm forma-
tion have been researched, with the finding that there is strong evidence 
that biofilms enhance the absorption of air pollutants (Young 1996; 
Mansch and Bock 1998). 

Heterotrophic bacteria produce chelating agents and organic 
acids that are weaker than the inorganic acids produced by the sulfur-
oxidizing and nitrifying bacteria. They have received comparatively little 
attention, but their role in deterioration is well established nonetheless 
(Lewis, May, and Bravery 1988; Saarela et al. 2004; Gorbushina 2007; 
Maruthamuthu et al. 2008). 

Recent work on bacteria has helped to quantify the effect they 
have on the dissolution of limestone, with one example showing a two-
fold increase in the laboratory dissolution rate compared to control lime-
stone samples (McNamara et al. 2005). Bacteria typically produce slime 
or extracellular polymeric substances (EPS) as part of a complex biofilm 
made up of polysaccharides, water, and proteins that has been shown to 
change the dissolution rate and dissolution pit morphology on samples of 
limestone (Perry et al. 2004). Damage from bacteria in the field has been 
described by McNamara and others (2006) and Mansch and Bock (1998). 

Biodeterioration studies of important cave painting sites such as 
Altamira have resulted in recent advances in understanding. Researchers 
have found that cyanobacteria and algae (phototrophs) and networks of 
heterotrophic bacteria increase stone deterioration through their meta-
bolic products, biomediated dissolution, and mechanical alteration, such 
as scaling (Cañaveras et al. 2001). As expected, the control of moisture, 
food, and light levels appears to be the most effective prevention method 
(Dornieden, Gorbushina, and Krumbein 2000; Zammit et al. 2008). 

Environmental control of cave environments has proven to be 
complex and controversial, as in the cave at Lascaux, where efforts to 
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limit the introduction of fungal strains through the use of a formalde - 
hyde foot-wash treatment for visitors resulted in the growth of a 
 formaldehyde-resistant strain of white Fusarium solani fungus (Bastian 
et al. 2007; Dupont et al. 2007; Jurado et al. 2009; Bastian and 
Alabouvette 2009; Bastian et al. 2009; Bastian, Alabouvette, and Saiz-
Jimenez 2009). This condition may have been exacerbated by the installa-
tion of a new ventilation system (Brunet, Malaurent, and Lastennet 2006; 
Lacanette et al. 2009). Computer modeling of the airflow at the Lascaux 
cave suggests that reducing the airflow may help avoid future damage 
(Malaurent et al. 2007). 

The role of halophilic microbes (mostly archaea, with some bacte-
ria) is important in stone decay (Laiz et al. 2000; Saiz-Jimenez and Laiz 
2000). A significant and open question is if hydroscopic salts may raise 
moisture levels to the point where halophilic microbes increase in abun-
dance, setting the stage for further microbial development of adjacent 
areas of stone. 

Differential Stress
While air pollution, salts, and biodeterioration capture the lion’s share  
of attention, there are advances in our understanding of other, often 
related decay mechanisms that are worth some consideration. Reviewing 
the recent literature on stone conservation, it is clear that there is an 
important trend in decay mechanism research that is focusing on what  
is called here (for want of a better term) “differential stress.” This decay 
mechanism includes the effects of wet/dry cycling, clay swelling, differen-
tial hygric stress, differential thermal stress, and stress from differential 
expan sion rates of material in pores (such as salts or organic material) 
versus in the stone. The general idea is that treatments, salts, water films, 
or biofilms—anything that causes the stone surface to react differently 
than the interior—can result in a shear stress, crack propagation, and, 
eventually, surface parallel detachment (e.g., flaking). For example, sig-
nificant shear stress is generated when, during a brief afternoon rain, the 
surface of a clay-containing stone swells, while the interior of the stone 
remains dry (Doehne et al. 2005). This would be considered an example 
of differential hygric stress and is typically found on the corners of stones 
such as Sydney sandstone and Portland brownstone. As mentioned earlier, 
sodium chloride expands at approximately five times the rate of calcite at 
surface temperatures, so decay in limestone from this mechanism would 
be an example of stress induced by differential thermal expansion (Nocita 
1987; Holmer 1998; Smith et al. 2005). Note that salts naturally tend to 
accumulate near the stone surface, setting up differences in how the two 
parts of the stone (surface and interior) react to environmental changes. 
Modeling has shown that there may be a particular depth beneath the 
stone surface where moisture is present and salts may accumulate 
(Snethlage and Wendler 1997). This depth is often the same as the thick-
ness of stone flakes or scales. Differential thermal expansion stresses may 
also be induced at the interface between minerals having different colors, 
for instance in granites exposed to direct sunlight (Casta 1988). Field 
measurements of stone surfaces show that rapid thermal variations are 
more common than previously thought (Molaro and McKay 2010).
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Organic material in pores, whether it is a polymeric consolidant 
or originating from biological sources, may expand significantly faster 
than the stone on wetting (Laurenzi Tabasso 1995; GCI and IHAH 2006). 
Work by Yang, Scherer, and Wheeler (1998) highlighted the importance of 
making sure consolidants have thermal expansion properties similar to 
the substrate being treated. Some recent work on thermal damage to 
stone reveals that it is an important decay factor, and stress may result 
from differential heating, such as when areas of stone undergo short-term 
cooling events from shade (Weiss et al. 2004; Gómez-Heras, Smith, and 
Fort 2006; Hall and André 2006; Sumner, Hedding, and Meiklejohn 
2007; Gómez-Heras, Smith, and Fort 2008). This effect may be more pro-
nounced at high-altitude sites such as Tiwanaku in Bolivia (Maekawa, 
Lambert, and Meyer 1995), where the drop in temperature when a cloud 
blocks the sun is substantial. 

Work by Warke and Smith (1998) found that climate chamber 
simulation studies do not take into account the important effects of radi-
ant heating and thus are not representative of field conditions. The bal-
ance between thermal and hygric damage is addressed in work at Petra 
by Paradise (2002; 2005). Research on clay swelling has advanced signifi-
cantly based on the research at Princeton University (Wangler and Scherer 
2008; Duffus, Wangler, and Scherer 2008; Jiménez-González, Rodríguez-
Navarro, and Scherer 2008), where it was found that shear forces can 
cause buckling of wetted stone surfaces and that intracrystalline swelling 
of clay is the primary mode of swelling for Portland brownstone, despite 
the proportion of swellable clay being only 1 percent of the stone. The 
clay is present as a cement at sand grain boundaries, permitting the clay 
sufficient leverage in brownstone. Osmotic swelling (salt-activated  
clay swelling) was found to be important in sepiolite-rich Egyptian lime-
stone (Rodríguez-Navarro et al. 1998). Understanding the relative role 
and dynamics of differential stress as it relates to air pollution, biodeteri-
oration, salt weathering, and conservation treatments remains an area for 
future research. 

Intrinsic Problems
“Intrinsic problems” (or “inherent vice”) is an expression that places the 
blame for stone decay squarely on the material, rather than the particular 
environment. Every region seems to have a stone that ought to have 
remained in the ground, rather than being used to create sculpture, monu-
ments, and buildings. Some examples include Reigate stone in the UK 
(which contains unstable silica, glauconite, and smectite), Lausanne 
molasse in Switzerland (containing swelling clays), and the Lecce lime-
stone of Italy (with a porosity of 50 percent). These “difficult stones” 
appear to account for a disproportionate share of stone conservators’ 
attention. Recent research into these problematic stones includes several 
studies of Lecce and similar highly porous limestones (Fratini et al. 1990; 
Calia et al. 2004; Atzeni, Sanna, and Spanu 2006). 

As far as Reigate stone is concerned, decay of this material is not 
a new phenomenon. Reporting in 1713 on the condition of Westminster 
Abbey, Sir Christopher Wren wrote, “the Ashlar of the whole fabric . . . is 
disfigured in the highest degree . . . and the stone is decayed 4 inches deep 
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and falls off perpetually in great scales.” He comments wryly that Reigate 
“is a stone that would saw and work like wood, but not durable, as is 
manifest” (as quoted in Prudon 1975). An alternative point of view notes 
that the decay of Reigate stone is mainly confined to surface layers and 
has not been responsible for structural failure (Lockwood 1994). 

Work on Swiss molasse and similar stones has included the use  
of grouts for the extensive detached areas often found on buildings and a 
new treatment for reducing the swelling of clays (discussed in more detail 
in chapter 3) (Jiménez-González and Scherer 2004; Rousset et al. 2005). 

One intrinsic issue that researchers have puzzled over for several 
decades is the bowing of thin marble slabs on emblematic modern 
 buildings, such as the Amoco building in Chicago, the Grande Arch de  
la Defénse in Paris, and Alvar Aalto’s Finlandia city hall in Helsinki. 
Substantial recent research has found that differential expansion of 
 calcite enhanced by moisture, microstructure, and differential residual 
strains in the marble is the main cause of this problematic and still some-
what mysterious phenomena (Siegesmund, Koch, and Ruedrich 2007; 
Grelk et al. 2007; Siegesmund, Ruedrich, and Koch 2008; Malaga, 
Schouenborg, and Grelk 2008; Marini and Bellopede 2009). 

Notes
1 System dynamics deals with understanding the behavior of complex systems over 

time. It is an approach that uses internal feedback loops and time delays to 
characterize the entire system and nonlinear behaviors. 

2 Major programs were coordinated by the European Union through its STEP and 
Environment initiatives, the NATO Committee for the Challenges of Modern 
Society, the United Nations Economic Commission for Europe (UNECE), the US 
National Acid Precipitation Assessment Program (NAPAP), the UK National 
Materials Exposure Programme, and the German Bundesministerium für 
Forschung und Technologie (BMFT).

3 EC project “Carbon content and origin of damage layers in European 
monuments–CARAMEL” (EVK4-CT-2000-00029). Related EC projects on air 
pollution and climate change include: MULTI-ASSESS (2002–5), CULTSTRAT 
(2004–7), and Noah’s Ark (2004–7).

4 Sulfur dioxide is detectable to the human nose at concentrations of about 0.5–0.8 
parts per million (1400–2240 µg/m3).

5 SO2 limits: WHO (2008): 20 μg/m3; US EPA (1997): 80 μg/m3; EU (2008): 20 μg/m3

6 The Peclet number is the ratio of the rate of solute transport by advection to the 
rate of transport by molecular diffusion. For Pe « 1, diffusion dominates and ion 
transport proceeds according to the concentration gradient. If Pe » 1, advection 
dominates and ion transport takes place due to capillary water flow. The Peclet 
number is defined at the macroscopic scale of the bulk porous material.

7 “Alveolization is a kind of differential weathering possibly due to inhomogeneities 
in physical or chemical properties of the stone. Alveolization may occur with 
other degradation patterns such as granular disintegration and/or scaling. In arid 
climates large alveoles of meter size are frequently formed (e.g., Petra Jordan)” 
(Vergès-Belmin 2008, 28).
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Chapter 2

Putting It Right: Preventive and Remedial Treatments

When confronted with decaying stonework, one’s immediate instinct is to 
“do something about it.” Traditionally, this has meant doing something  
to the stone: perhaps patching it up with mortar, applying some kind of 
protective coating, or cutting out decayed stone and replacing it with new 
stone. Regular maintenance is vitally important, wherever practicable; 
William Morris (1877) wrote of the need to “stave off decay by daily 
care,” and in a textbook for conservators encouragingly titled Preventive 
Conservation of Stone Historical Objects, Domaslowski (2003) persua-
sively argues that routine maintenance is an often-underappreciated 
aspect of preventive conservation. Now, however, there is an increasing 
emphasis on doing something not only to the stone itself but also to the 
environment in which the stone is found. This reflects a growing aware-
ness of the importance of preventive conservation, of the principle of 
minimum intervention, and of the need to limit the use of materials that 
might prove harmful to either the stone or to the environment. Also, now 
that there is a better understanding of decay mechanisms, a conservation 
strategy can be designed to reduce the rate of damage by focusing on 
points of leverage that can mitigate some decay processes. An interesting 
example is the use of multispectral satellite images of a historic city to 
provide an automated assessment of the condition of the roofs, where 
building degradation often begins (Gonçalves et al. 2009). 

PREVENTIVE CONSERVATION 

Doing something to the stone’s environment is not simply a matter of 
temperature and relative humidity. Preventing damage can embrace a very 
wide range of topics: legislation to protect individual buildings and mon-
uments, pollution control, traffic control, control of groundwater, visitor 
management, and disaster planning (Baer 1991; Baer and Snethlage 1997; 
Baer and Snickars 2001). Such topics may seem remote from the prob-
lems of an individual block of stone, but they are nonetheless of great 
importance. Other areas of preventive research on immovable stone heri-
tage have included shelters, wind fences, and reburial (Demas 2004; 
Teutonico 2004), as well as modeling of interior environments to help 
determine needed interventions (Albero et al. 2004). 
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Preventive conservation measures of more immediate effect are 
usually concerned with keeping water out of the stone and with control-
ling the relative humidity and temperature of the air around the stone. 
This is relatively easy for stone artifacts within a museum, and it may 
also be feasible for stone masonry that is exposed on the interior of a 
building (Price and Brimblecombe 1994; Price 2007). It is less easy for 
stonework on the outside of a building, although a dramatic example of 
this approach is provided by the glass envelope constructed over the ruins 
of Hamar Cathedral in Norway. 

More modest protective shelters are frequently used on the out-
side of a building to protect those features that are particularly impor-
tant. They may be part of the original design (for example, a canopy 
protecting a statue in a niche), or they may be a later addition. As an 
extreme measure, they may enclose the feature altogether. Their purpose 
is to reduce the amount of rain that reaches the stone and, insofar as is 
practicable, to stabilize the temperature and moisture content of the 
stone. If the shelter is a later addition, it is likely to be visually intrusive— 
unless it is so small as to serve little purpose. 

Few studies have been undertaken of the design requirements of 
such shelters, and it is possible that their benefits are more psychologi-
cal than actual. This has been evaluated in practice in only a few cases 
(Agnew et al. 1996; Aslan 2007). One case study is at the site of the 
Hieroglyphic Stairway, in Copán, Honduras, where a simple canvas 
shelter has prevented lichen growth and the swelling of the clay- 
containing stone due to frequent rainstorms (Doehne et al. 2005; GCI 
and IHAH 2006). A second case study, which calculated protective 
 indices for several styles of shelter at the archaeological site of Joya de 
Ceren in El Salvador, found that evaporation was reduced and thermal 
and relative humidity stability improved in several cases (Maekawa 
2006). A further useful study was undertaken for a pavilion at 
Chartwell, Sir Winston Churchill’s country house in Kent, England 
(Lithgow, Curteis, and Bullock 2007). The pavilion was open on two 
sides, and interior decoration suffered from condensation events, which 
were mitigated by roof repairs and a temporary wall to buffer the 
microenvironment during winter. 

The main purpose of relative humidity control or buffering is  
to reduce damage from salt and moisture cycles. The humidity regime 
required to prevent damage in a stone or a wall painting that is contami-
nated with a single salt is well established. However, stone is more com-
monly contaminated with a mixture of salts. As discussed in the section 
on salts in chapter 1, the behavior of salt mixtures is complex (Steiger 
and Zeunert 1996; Price 2000; Steiger 2005b; Sawdy and Heritage 2007; 
De Clercq 2008; Franzen and Mirwald 2009), and there are now method-
ologies to help with selecting appropriate humidity ranges, even for com-
plex mixtures (Bionda 2004). Arnold has proposed a methodology for 
reducing salt damage to wall paintings by monitoring the relative humid-
ity and temperature, and observing salt efflorescence over the course of 
one year (Arnold and Zehnder 1991; Arnold 1996). Then, the periods 
where salts appear can be correlated with the environmental parameters 
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and the environmental conditions modified to reduce the incidence of salt 
crystallization events (Laue, Bläuer Böhm, and Jeannette 1996). There is 
increasing evidence that drying rates are important and that even a small 
reduction in drying rate can result in salts crystallizing on the surface as 
relatively harmless efflorescence (Selwitz and Doehne 2002). This was the 
logic behind the suggestion that a row of trees be planted to help protect 
salt-laden structures at the site of Port Arthur in Australia (Thorn and 
Piper 1996). 

The remainder of this chapter is devoted to research related to 
active conservation: doing something directly to the stone itself. In keep-
ing with the title of this volume, this chapter is not a handbook of repair 
techniques. Information on the routine practice of stone conservation is 
available elsewhere (Ashurst and Ashurst 1988; Ashurst and Dimes 1998; 
Ashurst 2007; Snethlage 2008). 

ACTIVE CONSERVATION: CLEANING 

Cleaning is often one of the first steps to be undertaken after a condition 
survey has been completed. As expected, carbonate materials are the most 
reactive to acidic pollution and thus have received the lion’s share of 
attention in studies of stone cleaning. By removing the dirt, one can bet-
ter see the condition of the underlying stone and thus judge what further 
conservation may be necessary. Cleaning may also serve in some circum-
stances to remove harmful materials from the surface. However, the pri-
mary reason for cleaning will often be the dramatic change in appearance 
that can be achieved. A dirty building or monument does not look well 
cared for, and the dirt may well obscure both fine detail and major archi-
tectural features. Nonetheless, there are those who would argue that 
cleaning contravenes one of the fundamental principles of conservation—
reversibility—and that by removing the dirt one is removing both the 
sense and the evidence of history. 

From a morphological point of view, the original stone surface 
may be present under a layer of soot or black crust. However, the stone 
cannot be considered original from the chemical point of view, having 
undergone a series of changes as the surface equilibrates with its 
 varying environment (Vergès-Belmin 1994; Smith, Gómez-Heras, and 
McCabe 2008). Different types of gypsum crust morphology have been 
used as criteria for determining the appropriate degree of gypsum 
removal, and in some cases it has been deemed no longer a desirable 
goal to eliminate all gypsum from stone surfaces (Bromblet and Vergès-
Belmin 1996; Siegesmund et al. 2007). After removal of black crusts, 
the persistence of a gypsum layer bearing no airborne particles may 
indicate that the original surface has been preserved. This type of layer 
is approximately 30–500 µm thick. It cannot be recognized with the 
naked eye; however, it is often detected in cross sections using optical 
microscopy, ESEM, or EDS (energy dispersive X-ray spectrometry) 
(Vergès-Belmin 1994). In other cases, a clear gypsum layer occurs 
underneath the fragile, hardened stone surface and therefore, when 
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reached, it means that the original  surface is completely gone (José 
Delgado Rodrigues, personal communication). 

A wide range of techniques is available for cleaning stone, rang-
ing from those that are intended for use on large facades to those that  
are intended for meticulous use on finely carved and delicate sculpture. 
Techniques are reviewed by a range of researchers and practitioners: 
Fassina 1994; Andrew, Young, and Tonge 1994; Ashurst 1994; Cooper, 
Emmony, and Larson 1995; BSI 2000; Vergès-Belmin and Bromblet 2000; 
Rodríguez-Navarro et al. 2003; Normandin et al. 2005; Worth 2007. This 
is an area where much progress has been made in the past twenty years, 
although only a portion is reported directly in the literature. The basic 
techniques have remained largely the same, although they have become 
more refined. This reflects an increasing awareness of the damage (and 
consequent litigation) that may be caused by inappropriate or overenthu-
siastic cleaning and also of the environmental issues posed by the use of 
certain chemicals or excessive quantities of water (Maxwell 1996; Young, 
Urquhart, and Laing 2003). With some exceptions, such as latex cleaning 
films, developments have largely come about through care and attention 
on-site rather than in the laboratory. These lessons from the field have 
been consolidated into guidelines (BSI 2000; Young et al. 2003).

It should be noted that any cleaning method requires judgment 
and an agreed-upon definition of the target cleaning level before the work 
begins. For example, in the present urban environment, uncleaned lime-
stone surfaces may range in color from white (where water runoff has 
taken place) to dark brown and black, depending on the amount of accu-dark brown and black, depending on the amount of accu-
mulated dirt. All of these surfaces differ substantially from the “original” 
freshly cut surfaces, and establishing a target level of cleaning is not an 
easy task when a single building may contain a wide range of surfaces. 

A number of authors have emphasized the damage that can be 
caused by cleaning: loss of surface, staining, deposition of soluble salts, 
or making the stone more vulnerable to pollutants or biological growths. 
They include Maxwell (1992); MacDonald, Thomson, and Tonge (1992); 
Young and Urquhart (1992); Andrew, Young, and Tonge (1994); Maxwell 
(2007); and Delegou and others (2008). It is undoubtedly the case that 
very severe damage can arise, but a degree of skepticism would perhaps 
be justified over “damage” that is observable only through a scanning 
electron microscope. 

In most cleaning methods no attempt is made to collect the dirt 
and detritus, which is instead allowed to run down the stone and pass 
into the drains. Some attention is now being given to techniques that 
 collect the detritus and, for example, permit recycling of the abrasive 
(Hoffmann and Heuser 1993). A commercial system has been developed 
that uses fine powders and an air extraction system to capture the debris. 
This and similar methods have seen wide application (Vergès-Belmin and 
Bromblet 2000; Iglesias, Prada, and Guasch 2008). 

The effectiveness of a cleaning technique is usually assessed sub-
jectively, although objective procedures have been described by many 
authors (Werner 1991; Young 1993; Andrew, Young, and Tonge 1994; 
D’Urbano et al. 1994; Vergès-Belmin 1996a; Kapsalas et al. 2007; Hauff, 



 Stone Decay 31

PROOF    1  2  3  4  5  6

 Putting It Right: Preventive and Remedial Treatments 31

PROOF    1  2  3  4  5  6

Kozub, and D’ham 2008). Vergès-Belmin (1996b) gives a particularly use-
ful overview of methods for evaluating cleaning treatments for stone. 
Recent work has shown that quantitative measurements of color change 
after stone cleaning vary considerably, mainly due to the action of hygro-
scopic salts (Vergès-Belmin, Rolland, and Leroux 2008). Precautions 
should be taken to account for the influence of salts when making such 
measurements. When discussing color change due to cleaning, it should 
be made clear that once aged, the stone surface can never be returned to 
the freshly cut color. Color can be used as criteria for cleaning only when 
a “reference surface” is defined and taken as a target for the cleaning 
level to be reached in the intervention. Color changes related to laser 
cleaning are dealt with in the next section. 

Laser Cleaning
Using lasers to clean stone is now routine, and large-scale commercial 
application of laser cleaning has become more common over the past 
fifteen years (Dajnowski, Jenkins, and Lins 2009). Its great attraction 
is that it does not entail any physical contact with the stone and so 
lends itself to the cleaning of very delicate surfaces. There are no sol-
vents or water to redistribute potentially harmful salts. The technique 
is selective and sensitive in terms of the degree and control of removal. 
The principle is essentially simple: a laser beam impacts the surface, 
and the energy of the infrared beam is dissipated by the sudden heat-
ing and expansion of light-absorbing material on the surface, such as 
particles rich in carbon, and the nearly instantaneous vaporization of 
moisture in the surface layer, which acts to remove surface dirt. 
Spraying the surface with water just before laser cleaning can enhance 
the effectiveness of the treatment (Siedel, Neumeister, and Sobott 
2003). For light-colored stones with dark surface deposits, the infrared 
beam continues to be absorbed while the stone remains soiled and 
cleaning proceeds. Once the dirt has been removed, however, the light is 
reflected by the clean surface, and no more material is removed. This  
is not the case for biotite-bearing granites and painted stones, where 
laser cleaning may not be appropriate. The technique is described in 
detail by a number of authors, including Cooper, Emmony, and Larson 
(1993); Cooper (1998); Maravelaki-Kalaitzaki, Zafiropulos, and 
Fotakis (1999); and Orial and others (Orial and Riboulet 1993; Orial, 
Vieweger, and Loubiere 2003). 

With early systems, the speed of cleaning was comparable to that 
achieved with a pencil-sized air-abrasive gun. The use of optic fibers to 
transmit the laser beam was a significant advance (EC project: LAMA—
LAser MAnuportable pour le nettoyage des façades courantes et des monu- pour le nettoyage des façades courantes et des monu-
ments historiques; BRITE/EURAM BRE CT93-560). Now entire facades 
have been laser cleaned (Pini, Siano, and Salimbeni 2000), including the 
town hall in Rotterdam (Nijland and Wijffels 2003), and many monuments 
in Poland (Koss and Marczak 2008). The technique is seeing additional test-
ing and application in the United States as well (Normandin et al. 2007). 

Current research is aimed at selecting the optimal wavelength  
and pulse energy; at examining the effects on the stone, both physical and 
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chemical; at comparing the performance of lasers with other cleaning 
techniques; and at identifying possible hazards to the  operator (Vergès-
Belmin et al. 2003; Bromblet, Labouré, and Orial 2003; Rodríguez-
Navarro et al. 2003). The use of a laser requires special caution when 
cleaning surfaces with traces of polychromy (Fassina, Gaudini, and 
Cavaletti 2008). A set of conferences devoted to the use of lasers in art 
conservation (Lasers in the Conservation of Artworks, or LACONA) has 
taken place every two years since 1995: for example, Liverpool in 1997 
and Madrid in 2007. A European Cooperation in Science and Technology 
project on the topic of artwork conservation by laser, funded by the 
European Science Foundation, ran from 2000 to 2006 and resulted in  
a handbook available for download (http://www.cost.esf.org/library/
publications/05-40-Cleaning-Safely-with-a-Laser-in-Artwork-Conservation).

Further development of equipment has taken place, identifying, 
for example, the appropriate means and timing of delivering the laser 
pulse to the surface of the stone (Margheri et al. 2000; Mazzinghi and 
Margheri 2003; Dogariu et al. 2005; Siano et al. 2008). An important 
issue with laser cleaning is the color of the cleaned surface. In some cases, 
a yellow surface layer is revealed, which in some examples is related to 
previous restoration treatments (Vergès-Belmin and Dignard 2003; 
Zafiropulos et al. 2003; Gaviño et al. 2004; Gaviño et al. 2005; Vergès-
Belmin and Laboure 2007; Andreotti et al. 2009). Color changes after 
laser cleaning may happen due to modifications in the substrate (pink 
feldspars, for instance), to modifications in any covering colors, or to 
changes in deposited dirt particles. The last situation may indicate that 
the target cleaning level has not been reached. 

Latex Poultice Method
An important challenge for stone conservation has been the cleaning  
of large, public interiors, such as cathedrals, while allowing them to 
remain open during the process. This stricture generally rules out the use 
of toxic chemicals and abrasives. One innovative response to this chal-
lenge has been the development over the past fifteen years of the latex 
poultice method; it is known commercially as Arte Mundit. Originally 
developed as an improvement to the Mora poultice (Woolfitt and Abrey 
2000) by Eddy De Witte (De Witte and Dupas 1992) as a spray-on film 
containing EDTA (ethylene diamine tetra acetic acid) and other additives, 
it has seen adaptation and application to a wide range of sites, including 
St. Paul’s Cathedral in London (Miget 2000; Odgers 2003; Jacobs 2004; 
Stancliffe, De Witte, and De Witte 2005; Odgers 2006; Allanbrook and 
Normandin 2007). The method is best used on sound interior surfaces.  
If the soiling has been trapped in an encrustation such as a gypsum crust, 
the latex poultices no longer work. Recent research on latex poultices  
has raised the issue of residues left on stone surfaces by the method, 
which deserves further study (Morasset 2008; Morasset et al. 2009),  
and there may also be concern over unintentional mechanical damage to 
friable surfaces during removal. There are interesting parallels between 
the residue issue and the use of gels for the cleaning of paintings (Stulik 
et al. 2004). 

http://www.cost.esf.org/library/publications/05-40-Cleaning-Safely-with-a-Laser-in-Artwork-Conservation
http://www.cost.esf.org/library/publications/05-40-Cleaning-Safely-with-a-Laser-in-Artwork-Conservation
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Biological Cleaning
Hempel (1976) was one of the first to raise the possibility of biological 
cleaning. He had been surprised by the effectiveness of a clay poultice 
containing urea and glycerol and proposed that microorganisms were at 
least partially responsible. Kouzeli (1992) has reported favorably on the 
technique in comparison with pastes based on EDTA or ammonium 
bicarbonate. 

Biological cleaning, in general, has been little researched (Ranalli 
et al. 1996; Ranalli et al. 2000). Gauri has demonstrated the use of the 
anaerobic sulfur-reducing bacterium Desulfovibriode sulfuricans in remov-
ing the black crust on marble (Gauri et al. 1992). He has argued, moreover, 
that the bacterium was converting calcium sulfate back into the calcium 
carbonate from which it was originally formed (Atlas, Chowdhury, and 
Gauri 1988; Gauri and Chowdhury 1988). Konkol has demonstrated that 
using an enzymatic cleaner derived from the fungus Trametes versicolor 
may reverse biological staining of marble (Konkol et al. 2009). Efforts to 
remove lichen from concrete through the use of Thiobacillus bacteria 
have been evaluated by De Muynck, De Belie, and Verstraete (2010). 
Comparison of sulfate-reducing bacteria treatment versus conventional 
chemical cleaning procedures on a marble element of the Milan Cathedral 
is reported by Toniolo et al. (2008) and Cappitelli et al. (2007a).

Targeting the Dirt 
Gauri’s work is interesting because it takes account of the nature of the 
dirt. It is true that this may be implicit in other cleaning techniques (e.g., 
the use of complexing agents to increase the solubility of calcium sulfate  
or the use of hydrofluoric acid to dissolve silica), but it is disappointing 
that only a few developments in cleaning techniques have flowed out of  
the extensive studies on black crusts. One example is the work of Vergès-
Belmin, Pichot, and Orial (1994) determining the point at which to stop 
the removal process. Livingston (1992) has studied the solubilities of cal-
cium carbonate and calcium sulfate; Schiavon (1992) has commented on 
the distribution of calcium sulfate within the pores of stone and on that 
distribution’s implications for water washing; and Skoulikidis and 
Beloyannis (1984) have attempted to convert calcium sulfate back into cal-
cium carbonate by the use of potassium carbonate, blissfully ignoring the 
potentially harmful effects of the resulting potassium sulfate. Few other 
researchers, however, have focused directly on the nature of the dirt depos-
its in an attempt to develop more effective cleaning techniques. Partially, 
this has been due to the fact that it is only recently that the complex amal-
gam of organic fractions contained in patinas and the role microbes play in 
this ecology have become better known (see the Biodeterioration section  
in chapter 1 and the Rock Art section in chapter 5). 

ACTIVE CONSERVATION: DESALINATION 

In situations where soluble salts are a major contributor to decay, it 
makes sense to try to remove the salts. The word try is used deliberately. 
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The removal of water-soluble salts sounds tantalizingly easy, but it can 
prove difficult in practice. Salt reduction may be a more appropriate  
term (Redman 1999; Sawdy, Heritage, and Pel 2008; Pel, Sawdy, and 
Voroninaa 2010).

Salt reduction is relatively straightforward in the case of small 
artifacts, which can, for example, be immersed in water or enclosed 
completely in a poultice, though even here problems can arise through 
the frailty of the surface or the presence of pigments (Beaubien et al. 
1999; Paterakis 1999; Muros and Hirx 2004; Franzen et al. 2008).  
The real problems start when one attempts to remove salts from the 
masonry of a building or monument. In an early desalination study, 
Bowley (1975) demonstrated that it was possible to extract a worth-
while quantity of salt from masonry through the repeated use of clay 
poultices, although little would be gained in the long run unless one 
could eliminate the source of further salt. An excellent review (Vergès-
Belmin and Siedel 2005) makes it clear that larger-scale masonry desali-
nation needs further study. 

Desalination of masonry is usually attempted through the use of 
poultices, which may consist of a range of materials (e.g., clay, sand, 
and paper pulp) (Auras 2008). In those instances where calcium sulfate 
is to be removed, additional materials may be added in order to increase 
its solubility. Clearly there are overlaps here with cleaning, especially in  
the removal of black crusts. The additives may include EDTA and its 
sodium salts, sodium bicarbonate, ammonium bicarbonate, and ammo-
nium carbonate (Maravelaki et al. 1992; De Witte and Dupas 1992; 
Alessandrini et al. 1993; Leitner 2005; Henry 2006, p. 153). A word of 
warning may be appropriate: If a limestone is heavily sulfated, the cal-
cium sulfate may be all that is holding it together, and total removal 
could be disastrous. 

An EC project, Assessment of Desalination Mortars and Poultices 
for Historic Masonry (DESALINATION) 2006–9, has worked to provide 
a scientific foundation and guidelines for the efficient application of 
desalination poultices (Bourguignon et al. 2008; Doehne et al. 2008; TU 
Delft 2009). Principles involve matching the poultice to the pore charac-
teristics of the substrate (kaolin helps with finer stones), preventing rapid 
drying of the poultice, using less water, and thinner poultices. While 
counterintuitive, using less water helps remove salts that are near the 
stone surface and helps avoid pushing the salts deeper into the stone. 
Some improvements, using finer poultices and both sides of the wall, have 
also been proposed by other researchers to improve the efficiency of the 
desalination process (Friese and Protz 1997; Friese, Protz, and Peschl 
1997). More recent work has shown that poultice shrinkage and detach-
ment are further important parameters in improving poultice efficiency 
(Bourgès and Vergès-Belmin 2008a; Bourgès and Vergès-Belmin 2008b; 
Sawdy, Heritage, and Pel 2008; Heritage et al. 2008). 

Desalination efforts often need to be coupled with efforts to 
reduce the supply of salts, such as the maintenance or installation of a 
damp-proof course (DPC) at the base of the building foundation (Pinto 
Guerra 2008; Young and Ellsmore 2008). Installing new DPCs to deal 
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with the accumulation of salts and damp has a mixed record in some 
church monuments (Henry 2006, p. 277). 

Finally, the use of bacteria in desalination may merit further 
attention. Gauri’s use of sulfur-reducing bacteria to eliminate the black 
crust has already been mentioned, and Gabrielli (1991) gives an anec-
dotal account of using the reducing atmosphere created by cow dung to 
convert nitrate salts into elemental nitrogen gas. One wonders, however, 
if other salts are added at the same time. Removal of salts by microor-
ganisms has also been proposed by Webster and others (Webster, Vicente, 
and May 2004; Webster and May 2006) as a central part of the EC 
BIOBRUSH project (BIOremediation for Building Restoration of the 
Urban Stone Heritage; May et al. 2008). However, these studies found 
that any effects of the bacteria were masked in many cases by the effect 
of the material used to apply them and that there were practical prob-
lems in supporting the weight of the application material on large areas. 
One is left with the feeling that additional development is needed before 
practical biological cleaning can be readily applied. In contrast, biocalci-
fication appears to be at a much higher level of development (see Lime 
and Biocalcification section below). 

ACTIVE CONSERVATION: CONSOLIDATION 

Where stone is severely weakened by decay, some form of consolidation 
may be necessary to restore some strength. Ideally, one might hope to 
make the stone at least as strong as it was originally (Snethlage 2008; 
Scherer and Wheeler 2009), so it might resist further decay, but even the 
strength to resist the battering of the wind or the wing of a bird may be 
enough to prolong survival. 

It all sounds so easy. One just has to find something that will 
 penetrate the decayed stone, binding it together and securing it onto the 
sound stone beneath (Ginell, Wessel, and Searle 2001). And why stop 
there? Why not find something that will also protect the stone from fur-
ther decay? Perhaps it could prevent damage from cycles of salt crystalli-
zation. Or perhaps it could make the surface of the stone water-repellent 
or able to resist hygric swelling. Of course, the treatment will need to  
be reasonably cheap, easy to apply, and safe to handle. VOC (volatile 
organic compound) regulations mean that any treatment needs to be for-
mulated to be environmentally friendly. It will need to remain effective 
for decades at a time, in order to last from one maintenance cycle to the 
next (often dictated by the cost of scaffolding). The treated stone will 
need to have much the same moisture expansion, thermal expansion, and 
elastic modulus as the untreated stone in order to avoid internal stresses 
and assure compatibility. Ideally, the treatment should work equally well 
on any type of stone, regardless of the cause of decay. And let’s not  forget 
that it must be completely invisible. 

Put like this, it sounds absurd to attempt the task. It is like trying 
to find one pill that will cure all the diseases known to humankind. But 
this has not hindered the search for an all-singing, all-dancing stone 
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 consolidant-cum-preservative. It is a wonder we have made as much 
progress as we have. An enormous variety of materials have been tried 
since time immemorial (Barff 1860; Egleston 1886), each with its own 
advocates (Palmer 2002). 

One has to start somewhere, and one of the properties that a 
 consolidant must have is the ability to penetrate the stone. This, in turn, 
requires a low viscosity and a low contact angle. Next, the consolidant 
needs to stiffen or set once it is in place in order to strengthen the stone. 
These requirements can be met in three ways: first, one could think of 
applying a substance that is liquid at high temperature and stiffens as it 
cools down—wax for instance. In practice, it is hard to get a low enough 
viscosity without excessive heat, and wax tends to be sticky and to pick 
up dirt. The consolidation might become risky in areas having significant 
exposure to the sun. The second approach is to use a consolidant dis-
solved in a solvent. One cannot assume, however, that the consolidant 
necessarily penetrates as far as the solvent, and there is always a danger 
of the consolidant being drawn back to the surface as the solvent evapo-
rates. Third, one can use a low-viscosity system that undergoes a chemical 
reaction in situ to give a solid product. 

Consolidants are usually applied to the surface of the stone by 
brush, spray, pipette, or by immersion and are drawn into the stone  
by capillary action. Domaslowski (1969) experimented with a “pocket 
system” that was intended to hold the consolidant against the stone, and 
Mirkowski (1988) has described a system employing bottles to maintain 
a steady supply of the consolidant at a large number of points. At St. 
Trophime (Arles, France), consolidant was fed using “intravenous” tubes, 
allowing a slow drop-by-drop application to the stone surface (Mérindol 
1994). Schoonbrood (1993) has developed a low-pressure application 
technique that maximizes capillary absorption. Vacuum systems may also 
be used to facilitate penetration into movable objects and ashlars (see, 
e.g., Hempel 1976; Török 2008). The vacuum system developed by 
Balfour Beatty Limited (Balvac) for use on monuments (see, e.g., 
Antonelli 1979) did not find extensive application in practice. Various 
vacuum systems for sculpture are in use (Pummer 2008), and damage to 
fragile stone surfaces can be reduced by wrapping them with cotton. 

The majority of materials that have been tried as stone consoli-
dants have been organic polymers, but several inorganic materials deserve 
a particular mention, as their mode of operation is rather different: cal-
cium hydroxide (slaked lime) and barium hydroxide. 

Lime and Related Treatments
Nothing could be more natural than putting lime into limestone. The 
emotive appeal of lime must account for at least some of its popularity. 
There is, however, a sound rational basis for its use. If a saturated solu-
tion of calcium hydroxide is allowed to penetrate into limestone, subse-
quent evaporation of the solution will lead to the deposition of calcium 
hydroxide within the stone. This, in turn, will react with carbon dioxide 
in the air to produce calcium carbonate. This could serve to consolidate 
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the stone, in much the same way as carbonation of calcium hydroxide 
leads to the hardening of a lime mortar. 

This basic chemistry forms the basis of the “lime technique” 
(Ashurst 1998), which has been used extensively in England and to a 
lesser extent elsewhere. The technique, in its entirety, can quite transform 
the appearance of decayed limestone. However, Price, Ross, and White 
(1988) demonstrated that the lime was deposited largely in the outer 
 couple of millimeters of the stone and that no deep consolidation of the 
stone could be attributed to the calcium hydroxide. However, it is con-
ceivable that some consolidation could be attributed to the redeposition 
of calcium sulfate within the stone, a suggestion supported by the appar-
ent effectiveness of distilled water under some circumstances (Clarke and 
Ashurst 1972). The conclusion of Price, Ross, and White was that the 
success of the technique was largely attributable to the subsequent use of 
well-designed mortars, which filled surface fissures and other defects. An 
alternative suggestion, put forward by R. White (personal communica-
tion) and by Anagnostidis et al. (1992), is that the lime is serving to kill 
bacteria and other organisms and so reduces decay. Krumbein and others 
(1993) suggest that the observed sterility of marble treated with lime may 
be due not to biocidal action but to pore closure, which prevents 
colonization. 

Despite the hope that the lime treatment would lead to the depo-
sition of interlocking calcium carbonate crystals, in the manner of lime 
mortars, the available evidence suggests that it is deposited in an amor-
phous form that can have little consolidating effect. Tiano and others, 
however, have proposed a pretreatment based on glycoproteins derived 
from marine organisms and biomineralization (Tiano, Addadi, and Weiner 
1992; Tiano 1995; Tiano 2004). The pretreatment is reported to induce 
the nucleation of calcite, leading to well-formed crystals that adhere 
strongly to the underlying stone. More recent work undertaken by 
Jiménez-Lopez and colleagues (Jiménez-Lopez et al. 2007; Jiménez-Lopez 
et al. 2008) tested the consolidating effect of soil microbes precipitating 
calcite in porous limestones. 

The lime technique is still in use (Fidler 1995; Brajer and 
Kalsbeek 1999; Fidler 2002; Woolfitt and Durnan 2002; Oudbashi et al. 
2008). However, new nano-lime technology is now available after some 
years of development (Giorgi, Dei, and Baglioni 2000; Ambrosi et al. 
2001; Dei and Salvadori 2006; Adolfs 2007; Ziegenbalg 2008). This tech-
nology, which suspends nano-scale calcium hydroxide particles in alcohol, 
permits deep penetration into stone surfaces. The use of alcohol instead 
of water limits carbonation by CO2 before the particles are deposited in 
the porous stone and facilitates much higher loadings of lime than is pos-
sible with aqueous solutions. The method is commercially available and 
has been used in some specific cases (Howe 2007; Daniele and Taglieri 
2010). Future work should include the long-term testing of nano-lime 
materials, and an EC project on the topic is in progress: STONECORE 
(Stone Conservation for the Refurbishment of Buildings, http://www
.stonecore-europe.eu/; Drdácký, Silzkova, and Ziegenbalg 2009). 

http://www.stonecore-europe.eu/
http://www.stonecore-europe.eu/
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Barium Hydroxide 
Barium hydroxide is another material with a long pedigree. Chemically, bar- 
ium compounds and calcium compounds share many of the same charac-
teristics, the one notable difference being the insolubility of barium sulfate 
as compared with the sparing solubility of calcium sulfate. Barium hydro-
xide treatments thus have a number of possible objectives, which are not 
always clearly spelled out. They may serve to convert calcium sulfate to 
barium sulfate and thereby reduce damage due to the solution and recrys-
tallization of calcium sulfate; they may serve, after carbonation, to deposit 
a coating of barium carbonate, which will be more resistant than calcium 
carbonate to acid rain; and they may serve to consolidate the stone 
through the formation of solid solutions of barium calcium carbonate 
(Lewin and Baer 1974). The advantages and disadvantages of barium 
treatments are reviewed by Hansen and others (2003).

A number of techniques have been proposed for introducing the 
barium hydroxide into the stone. Simple application of barium hydroxide 
solution appears to be ineffective and led Schaffer (1932, p. 84) to dis-
miss the process in just seven words: “In practice the method proved a 
failure.” Lewin and Baer (1974), by contrast, described a technique that 
ensured the slow growth of well-formed barium carbonate crystals within 
the stone, a technique Lewin was still advocating fifteen years later 
(Lewin 1988). Schnabel (1992) has cast doubt on the effectiveness of the 
process when applied by capillarity in situ. More recent work on barium 
includes “not satisfying” results from Toniolo et al. (2001), good results 
on Gioia marble (Bracci et al. 2008), and its use as an additive in lime 
mortars (Karatasios et al. 2007). An EC project evaluating a range of 
consolidant treatments, including barium hydroxide, found improvements 
in drilling resistance to a depth of 2 cm in porous limestones (Bracci 
et al. 2008). 

The widest application of barium hydroxide has come in the field 
of wall paintings, where Matteini (1991) proposed that barium hydroxide 
treatment should be preceded by the use of ammonium carbonate to 
 dissolve the calcium sulfate (Ambrosi et al. 2000). Barium oxalates and 
aluminates have also been tested on a range of materials (Matteini  
and Zannini 2004). 

Organic Polymers 
From naturally occurring compounds, such as linseed oil and cactus juice, 
to the synthetic polymers of the twentieth century, somebody somewhere 
will have tried it as a stone consolidant. Generally speaking, such trials 
have been on a rather hit-or-miss basis. Materials have been selected 
more on the grounds of availability than of any predetermined qualities. 
Provided they will penetrate the stone and then set, they have been worth 
a try. In a number of cases, the use of incompatible materials on stone 
has led to a series of difficult and unintended consequences, even with 
ostensibly removable materials (Nimmrichter and Linke 2008).1

While it is easy to sound contemptuous about such an empirical 
approach, it is hard to see how things could have been any different. 
Because our knowledge of decay processes is still incomplete, our 
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 knowledge of how to combat them is incomplete, as well. Of necessity, 
we are learning by experience. 

The vast majority of researchers believe that stone needs to 
“breathe.” In other words, stone should remain permeable to water 
vapor, in order to avoid any buildup of moisture and soluble salts (and 
consequent shear stresses) at the interface between the treated zone  
and the untreated stone below. Rapid drying of stone surfaces reduces 
the potential for biological growth and decreases the time of wetness— 
a parameter associated with damage to stone from air pollution. 

Little attention has been given to the distribution of consolidants 
within stone at the microscopic level, despite numerous photomicro-
graphs taken with the scanning electron microscope. Many authors have 
been content simply to state that a treatment “lines the pores.” Sasse and 
Honsinger (1991) have described a “supporting corset” model, consisting 
of an impermeable layer that coats and protects the internal surfaces of 
the stone, while imparting mechanical strength. Hammecker and others 
(Hammecker, Esbert Alemany, and Jeannette 1992; Hammecker 1993) 
describe the use of mercury porosimetry to monitor changes in pore 
structure due to treatment, but such studies may be hindered by the 
change in contact angle following treatment. 

Little is known about the bonding, if any, that takes place 
between a consolidant and the substrate, and much is left to chemi-
cal intuition. It is widely argued, for example, that alkoxysilanes will 
form primary chemical bonds to the Si-OH groups on the surface of 
sandstones, but that they will not be able to form primary bonds to 
 limestones. Lack of bonding need not necessarily mean failure, however, 
for an unbonded network of consolidant could still provide strength. The 
stability of polymers used for protective purposes has been evaluated with 
increasingly sophisticated methods (Gembinski et al. 2000; Chiantore and 
Lazzari 2001; Favaro et al. 2005), both in the lab and the field, detailing 
their alteration and loss of efficiency over time. 

More needs to be known, not just about stability but also about 
the molecular structure of the polymer that is deposited within the stone. 
We speak glibly, for example, about the network polymer that is formed 
by the hydrolysis and subsequent condensation of tri-alkoxysilanes and 
tetra-alkoxysilanes. But how many siloxane bonds are formed, on aver-
age, by any one silicon atom? What is the structure of the polymer? How 
is it influenced by the presence of water, of solvents, of salts, or of partic-
ular minerals? How does it affect the strength of the polymer? Our 
 present knowledge of consolidants may be likened to folk remedies in 
medicine. We have gained a lot of experience of what is, and what is not, 
effective, but we have little understanding of how polymer consolidants 
work. Once we have a deeper understanding of the properties that are 
required of a consolidant, we shall be in a better position to synthesize 
compounds that incorporate those properties. 

Alkoxysilanes
The alkoxysilanes and alkyl alkoxysilanes, or “silanes” for short, have 
undoubtedly been the most widely used stone consolidants over the past 
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twenty years (Snethlage and Wendler 2000; Wheeler and Goins 2005; 
Price 2006; Wheeler 2008; Scherer and Wheeler 2009). Two compounds, 
in particular, have been dominant: methyltrimethoxysilane (MTMOS) and 
tetra-ethoxysilane (TEOS). The silanes are hydrolyzed by water to form 
silanols, which then polymerize in a condensation reaction to give a sili-
cone polymer. The water may come from the atmosphere or from the 
stone itself, or it may be added as a deliberate ingredient. In the latter 
case, a solvent may be required in order to make the mixture miscible. A 
catalyst may also be added, usually in the form of an organo tin or lead 
compound. The condensation reaction, and often the hydrolysis reaction 
also, takes place after the treatment has been absorbed by the stone, and 
the resulting polymer imparts the required strength to the stone. 

The popularity of MTMOS and TEOS is no doubt due in part to 
their commercial availability, and a number of proprietary products are 
available that are based on these two compounds. A number of other 
silanes have also been tried, usually involving substitution of the methyl 
group for larger alkyl or aryl groups. 

A thoughtful review by Wheeler (2008) of the use of alkoxysi-
lanes for stone consolidation deals with three important issues: the use of 
alkoxysilanes on clay-rich stone, alkoxysilanes used on limestone versus 
quartz sandstones, and the use of alkoxysilanes on marble. Results for 
clays are mixed: two important studies found that ethyl silicate treatment 
of clay-rich stone initially resulted in a strength increase, but that this 
improvement was lost after three to ten wet/dry cycles (Félix 1996; 
Scherer and Jiménez-González 2008). This suggests that for clay-rich 
stone, the focus should be on reducing clay swelling, not on increasing 
strength (see the Differential Stress section in chapter 1 for more on anti-
swelling treatments). 

The difficulty of bonding a silicate material to calcite has long been 
considered an important problem, resulting in some new research on cou-
pling agents and alternative consolidants (Wheeler, Mendez-Vivar, and 
Fleming 2003; Correia and Matero 2008; Ferreira Pinto et al. 2008; 
Ferreira Pinto and Delgado Rodrigues 2008). Wheeler (2008) points out 
that while the percent strength increase for limestone after ethyl silicate 
treatment is not as great as for sandstone, comparing the absolute level of 
the modulus of rupture (generally higher for limestone) provides a more 
realistic perspective and helps explain the widespread use of this material 
on limestone. The use of alkoxysilanes on marble is explained as filling 
narrow voids between calcite grains, which can help lock in particles expe-
riencing granular disintegration (Ruedrich, Weiss, and Siegesmund 2002). 

Recent work on nano particle–modified silanes show they reduce 
the cracking seen in conventional treatments and result in improved con-
solidation (Escalante, Valenza, and Scherer 2000; Miliani, Velo-Simpson, 
and Scherer 2007; Kim et al. 2008). Elastified silanes have also been 
developed to help create a less brittle film (Boos et al. 1996; Kim et al. 
2008; Maravelaki-Kalaitzaki et al. 2008). A commercial elastified version 
is available (E. Wendler; Remmers KSE 500 E). Surfactants have also  
been tested and result in a less brittle silane treatment—a hybrid nano- 
composite (Mosquera and de los Santos 2008; Simionescu et al. 2009). 
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Important research on application procedures has shown that the 
timing and number of applications can result in important differences in the 
pore-blocking effect and general hardness of TEOS (De Clercq, De Zanche, 
and Biscontin 2007). The development of microporosity during the curing 
of Funcosil stone strengthener was noted by Barajas and others (2009). 

Although the literature contains many papers describing the use 
of silanes on stone, there are few that attempt to come to grips with the 
underlying chemistry or the associated sol-gel technology. Some excep-
tions are studies by Wheeler (Wheeler, Mendez-Vivar, and Fleming 2003; 
Wheeler and Goins 2005; Scherer and Wheeler 2009), Scherer (Scherer, 
Flatt, and Wheeler 2001; Miliani, Velo-Simpson, and Scherer 2007),  
and Snethlage (Snethlage 2002; Meinhardt-Degen and Snethlage 2007; 
Snethlage 2008). Other recent work includes efforts to evaluate and con-
trol the relationship of pore evolution and solvent (Salazar-Hernández 
et al. 2009). Research continues on extending sol-gel treatments beyond 
stone to other diverse heritage materials, including bronze, pyrite, and 
unstable historic glass (Bescher and Mackenzie 2003; Khummalai  
and Boonamnuayvitaya 2005; Dal Bianco and Bertoncello 2008). Kumar 
(Kumar and Price 1994) has reported on the influence that soluble salts 
may have on the hydrolysis and condensation of MTMOS. Sodium sul-
fate, for example, markedly decreased the rate of both hydrolysis and 
condensation, whereas sodium chloride increased the rate of condensa-
tion. Silica-sol treatments at Petra were found to perform poorly in the 
presence of salts, resulting in the need to poultice areas to be treated 
prior to application (Simon, Shaer, and Kaiser 2006). Consolidation of 
stone does not encapsulate salts that may be present, and research shows 
that salts can be removed by poulticing after treatment if salt concentra-
tions are low to moderate. However, some of the consolidation effect is 
lost after wetting the samples, depending on the salt tested (Costa and 
Delgado Rodrigues 2008a). 

Epoxies 
Epoxy resins have had some bad press as far as consolidation is con-
cerned. Many conservators see them as viscous, brittle, yellowing materi-
als that may make admirable adhesives in some circumstances, but which 
are certainly not to be considered as consolidants. 

It is true that there have been some notable failures, but it would 
be foolish to dismiss epoxy resins entirely on these grounds. Selwitz, in 
three reviews (1991, 1992a, 1992b), summarized the use of epoxies as 
consolidants, charting the successes and failures. He highlights the pio-
neering work of Domaslowski (Domaslowski and Strzelczyk 1986; 
Domaslowski and Sobkowiak 1991) and Gauri (1974; Gauri and Appa 
Rao 1978) and emphasizes the two different paths they have adopted in 
order to treat relatively small objects and large facades, respectively. The 
choice of solvent, the means of application, and postapplication proce-
dures are vitally important to a successful outcome (Pinto and Delgado 
Rodrigues 2008b). 

Cycloaliphatic epoxy resins (Eurostac EP2101) have been success-
fully used in some important field consolidation cases in Italy, such as  
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the deep consolidation under vacuum of large, fissured granite columns 
(Cavalletti et al. 1985). More recent work has focused on application 
methods that minimize color change with aging (Ginell and Coffman 
1998), the use of waterborne epoxy emulsions (Kozub 2004; Luan 
Xiaoxia et al. 2008), and complex hybrids, such as epoxy-silica materials 
(Cardiano et al. 2003; Cardiano et al. 2005). Further work is needed to 
evaluate these newer materials. 

Acrylics 
Although in situ polymerization of methyl-methacrylate (and other acrylic 
monomers) has its advocates, the high rigidity and glass transition tem-
perature of polymethyl-methacrylate are generally considered to make it 
unsuitable as a stone consolidant. Far more attention has been given to 
the use of acrylic resins dissolved in solvents, and the ubiquitous Paraloid 
B72 (Acryloid B72) inevitably makes its appearance. 

Many conservators have experimented with B72 dissolved in an 
alkoxysilane such as MTMOS, the reasoning being that the B72 brings 
adhesive properties that the alkoxysilane lacks. The idea seems to have 
been that B72 is capable of securing pigment or loose flakes, for example, 
while the alkoxysilane provides deep consolidation. This treatment was 
used by Nonfarmale and Rossi-Manaresi in San Petronio Cathedral in 
Bologna, from where the term “Bologna cocktail” was coined (Gnudi, 
Rossi-Manaresi, and Nonfarmale 1979). In San Petronio, the limestone is 
very compact and virtually nonporous, and the decay progresses mainly 
with the formation and detachment of scales and other fragments. The 
cocktail was used in this case for gluing the scales, and because it was 
properly done by a very experienced conservator, the result was satisfac-
tory and those surfaces are apparently still in good condition (Laurenzi 
Tabasso 1995). The problem arises when the Bologna cocktail is trans-
posed to very porous limestones with pore-shaped voids (J. Delgado 
Rodrigues, personal communication). Under these circumstances, B72 has 
a very low impregnation capacity, forming indurated crusts and leading to 
severe detachments some time after application. In such cases it may con-
stitute a disaster. In short, Paraloid B72 is an excellent adhesive, but it is 
not necessarily a good consolidant outdoors. The Bologna cocktail is a 
useful example of the need to match the treatment to the problem and the 
need for critical thinking when navigating the conservation literature. 
More recent research on the aging of Bologna cocktail mixtures (Paraloid 
B72 and Dri Film 104) has been undertaken by Favaro and others 
(2006; 2007). 

Wheeler and co-workers (Wheeler et al. 1991; Wheeler, Wolkow, 
and Gafney 1992) have shown that the resulting composite gel is weaker 
than the polymers derived either from neat MTMOS or from a solution 
of B72 in a nonreactive solvent. Research has continued on acrylic/ 
siloxane composites (Zielecka, Bujnowska, and Bajdor 2007; Sadat-Shojai 
and Ershad-Langroudi 2009) with some promising results. Other work on 
B72 has focused on characterizing its long-term stability and field perfor-
mance (Roby 1996; Bracci and Melo 2003).
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Other Materials 
Innovative approaches to consolidation have come from several research-
ers, such as the use of calcium alkoxides (Favaro et al. 2008), the trans-
formation of gypsum or calcite into calcium phosphate based on historic 
patinas (Martín-Gil et al. 2005; Xiangmin Zhang and Spiers 2005; 
Vazquez-Calvo, Alvarez de Buergo, and Fort 2007; Snethlage et al. 2008), 
and frontal (in situ) polymerization (Proietti et al. 2006; Mariani, 
Capelletti, and Brunetti 2008). 

Research on the use of tartrates has led to a patented product 
that creates a conversion coating on calcite that can also act as a cou-
pling agent for ethyl silicate–based treatments (Slavid and Weiss 2001). 
Known commercially as HCT (Prosoco, Inc.), the product has been on  
the market for some time (Correia 2005; Correia and Matero 2008; Pinto 
and Delgado Rodrigues 2008a), and results from longer-term trials are 
expected in due course. 

Previous accounts of isocyanates, polyurethanes, and polyureas 
may be found in Hansen and Agnew (1990); Coffman, Agnew, and Selwitz 
(1991); Zádor (1992); Littmann et al. (1993); Auras (1993); and Riecken 
and Sasse (1997). The use of cyclododecane, largely as a temporary, 
reversible consolidant that sublimes over time, has been explored over the 
past decade as a useful new component of the conservator’s toolbox (Stein 
et al. 2000; Maish and Risser 2002; Muros and Hirx 2004; Anselmi, 
Doherty, and Presciutti 2008). Some health and safety issues regarding 
cyclododecane remain to be resolved (Rowe and Rozeik 2008). Advanced 
research in self-cleaning surfaces, such as titanium-coated glass, has led  
to interest in biomimetic surfaces that may have potential application for 
developing compatible coatings for the conservation of stone (Solga et al. 
2007; Qiang Liu et al. 2006; Kun Hong and Yuzhong Zhan 2008). 

Emulsions 
Organic consolidants frequently rely on the loss of volatile reaction prod-
ucts or solvents during the curing process. This can make application 
impracticable in hot climates, and it can pose a hazard both to the conser-
vator and to the wider environment. Attention has been given to the devel-
opment of aqueous emulsions for use as consolidants and as surface 
coatings (see the following section). Snethlage and Wendler (1991) discuss 
the possible use of an aminoalkyl silane to stabilize a silane emulsion, and 
Piacenti, Camaiti, Brocchi, and others (1993) report on the development 
of emulsions based on a hexafluoropropene-vinylidene fluoride elastomer. 
More recent work illustrates the diverse application of emulsions contain-
ing acrylic, fluorinated acrylic, methacrylate/alkoxysilane, or epoxy resin 
as conservation treatments (Castelvetro et al. 2004; Luan Xiaoxia et al. 
2008; Theoulakis et al. 2008). Further work in this area seems probable. 

SURFACE COATINGS

Surface coatings is a bit of a catchall category that includes a range of 
materials applied to stone—protective water repellents, emulsions, 
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anti graffiti coatings, salt inhibitors, protective oxalate layers, sacrificial 
lime coatings, colloidal silica, biocides, and bioremediation treatments. 
A  substantial research effort in the 1970s and 1980s was aimed at find-
ing a single treatment that would both consolidate and protect stone. 
However, the naïveté of this approach has become increasingly apparent, 
and many conservators now accept the need for two treatments: one to 
consolidate and one to protect. The soundness of the latter approach  
has been borne out by Félix and Furlan (1994) and Alonso and others 
(1994), who reported damage to certain stones following treatment with 
tetra- ethoxysilane (TEOS) unless the stones were also given a water-
repellent coating. 

Protective treatments need to be maintained, and this means 
retreatability needs to be taken into consideration when designing a treat-
ment system. Surface coatings can be renewed at regular intervals, but the 
initial consolidation will, it is hoped, last much longer. 

Some researchers have suggested doing away with the consolidant 
and relying solely on the water repellent (Sramek 1993). However, the 
long and disappointing history of water-repellent coatings on the more 
porous limestones and sandstones should not be dismissed too readily 
(Honeyborne et al. 1990). 

Water Repellents 
The property that has been most sought in surface coatings is water 
repellency. The logic behind the approach is simple: Since water is 
involved in most forms of stone decay, a treatment that prevents the 
ingress of water should help to reduce decay. Reviews of the use of water-
proofing agents on stone can be found in Charola (1995), Bromblet and 
Martinet (2002), as well as Vallet and others (2000). The influence of the 
substrate and the temperature of application for water repellents have 
been investigated by De Clercq and De Witte (2001). A series of confer-
ences on water repellents have been held, with the most recent in 
Brussels, Belgium in 2008 (International Conference on Water Repellent 
Treatment of Building Materials: Hydrophobe V 2008), (De Clercq and 
Charola 2008).

Water repellency has been provided largely by alkoxysilanes, 
 silicones, and fluoropolymers. The development of the fluoropolymers 
provides an interesting, and regrettably rare, instance of “tailor-made” 
products. The polymers are close relatives of polytetrafluoroethene (PTFE, 
or Teflon), renowned for its nonstick properties. The early fluoropolymer 
coatings worked well, except for a rather poor ability to stick to the 
stone! Subsequent development has entailed the synthesis of compounds 
containing functional groups that can adhere to the stone surface, thereby 
providing more persistent protection (Piacenti, Camaiti, Manganelli del 
Fa, et al. 1993). It has been argued that such water repellents should help 
to prevent resoiling, although this claim has not been adequately substan-
tiated. The rapid loss of water-repellent properties after accelerated (arti-arti-
ficial) and field (natural) weathering has been noted by several researchers 
and deserves further study. 
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Another example of “tailor-making” is provided by Fassina and 
co-workers (Aglietto et al. 1993; Fassina et al. 1994), who have synthe-
sized a range of fluorinated acrylic polymers. The intention, which was 
partially achieved, was to improve water repellency and resistance to 
photooxidation, by comparison with nonfluorinated analogues such as 
Paraloid B72. In a different approach, research on the use of polyure-
thanes on stone, known as the “Aachen concept,” has been reviewed by 
Snethlage and Wendler (2002). 

More recent work on several types of water repellent (an acrylic 
dispersion, an oligomeric alkylpolysiloxane, a solution of silicone resin 
and an alkylalkoxysiloxane in aqueous microemulsion) applied to seven 
types of limestone found that: “Due to the diverse petro-physical nature 
and properties of each stone, the results indicate that no universally com-
patible protective treatment exists” (Boutin 2001, 233). Accelerated or 
artificial tests of hydrophobic coatings as a method for reducing the 
effects of air pollutants on porous, calcareous stone have had mixed 
results, with the protective effect decreasing rapidly with time in bulk 
samples (Camaiti et al. 2007), while X-ray photoelectron spectroscopy 
(XPS) microanalysis showed adequate performance after aging 240 hours 
(Torrisi 2008). 

In addition to surface layers on stone, the water-repellent proper-
ties of silanes have also been used to create chemical damp-proof courses 
(DPC) along the base of foundations of buildings that lack this common 
feature of modern masonry buildings (Pinto Guerra 2008; Young and 
Ellsmore 2008). While an ancient idea (see Vitruvius 7.4), DPCs began to 
be standardized in new construction only starting in the mid-nineteenth 
century (Schmidt 1999). Chemical DPC application methods have included 
gravity feed and pressure injection of silanes into regularly spaced holes 
drilled into the foundation. Current methods include a cream containing 
silane injected into holes drilled along a mortar joint. The silane appar-
ently diffuses out of the cream and some distance into the mortar to form 
a chemical DPC. The long-term performance of various DPC measures 
suggests that some may experience a rapid loss of effectiveness over time 
(Alfano et al. 2006; Lopez-Arce et al. 2009; Henry 2006, p. 277). 

Recent work shows that sodium chloride preferentially crystal-
lizes on hydrophobic surfaces (Shahidzadeh et al. 2008), suggesting that 
water repellents are not compatible where salts may accumulate (Lubelli 
et al. 2007). An EC-funded project, SCOST (Salt Compatibility of 
Surface Treatments), addresses this issue in detail (De Witte 2001; 
Miquel et al. 2001).

Anti-Graffiti Coatings
The problem of graffiti has spread across diverse urban environments 
over the past fifteen years and is affecting not just modern buildings but 
historic monuments as well. A new EC project on the topic, comparing 
five graffiti protectives in six countries (Gardei et al. 2008), has found 
that four commercial anti-graffiti agents strongly reduce water and  
vapor transport and thus are not compatible with most historic building 
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materials. However, a new product developed specifically for historic mat-
erials was found to have acceptable performance and is undergoing field 
 testing. Recent work on an anti-graffiti coating containing perfluoropoly-
ether and epoxysilanes in aqueous microemulsion with an epoxide curing 
agent found good resistance to repeated cleaning cycles (Licchelli and 
Marzolla 2008). Earlier work by Mertz, Grunenwald, and Ternay (2003) 
found that some reduction in water vapor permeability was necessary to 
get efficient protection and that the preventive anti-graffiti treatments do 
not perform the same on substrates with high and low capillary absorp-
tion coefficients. 

Emulsions 
Complex emulsions as stone protectives have been studied by a number of 
researchers. The emulsions have included acrylics (Kumar and Ginell 1995; 
Theoulakis et al. 2008; Karatasios et al. 2009), silicones (Snethlage and 
Wendler 1991; Ren and Kagi 1995; Mao and Kagi 1995; Van Hees and 
Koek 1995; Ciabach 1996; Boutin 2001), silanes (Biscontin et al. 1993; 
Licchelli and Marzolla 2008; Wittmann et al. 2008), and  fluorinated poly-
urethanes (Guidetti, Chiavarini, and Parrini 1992; Croveri and Chiavarini 
2000). Performance varies from stone to stone but is generally promising. 

Crystal Growth Inhibitors 
Another possibility is to treat the stone surface with compounds that 
inhibit the growth of salt crystals, as was mentioned briefly in the section 
on salts. Relevant technology already exists in such diverse fields as anti-
caking agents for road salt and in oil extraction, where phosphonates are 
used to prevent the precipitation of barium sulfate and calcium sulfate 
(Black et al. 1991). Applications in the field of conservation have been 
proposed from time to time (e.g., Puehringer and Engström 1985), and 
recently this area has received some further research (Selwitz and  
Doehne 2002), including an EC project, SALTCONTROL, on the topic 
(Rodríguez-Navarro, Hernandez, and Sebastian 2006; Cassar et al. 2008). 
Inhibitors used to treat stone surfaces, such as phosphonates and carbox-
ylates were found to be a mixed blessing. In some instances they decrease 
damage by letting salts reach the surface as less harmful efflorescence. 
However, in other situations they enhance solution supersaturation ratios 
and absorb to surfaces, resulting in increased rates of damage. 

Oxalate Formation 
Building on the protective properties of scialbatura (see the Biodeteriora-
tion section in chapter 1), Matteini, Moles, and Giovannoni (1994) tested 
the use of ammonium oxalate to produce a shallow film of calcium 
oxalate on calcareous surfaces such as wall paintings. Both calcium car-
bonate and calcium sulfate react with a poultice containing a solution of 
ammonium oxalate to produce a cohesive, hydrophilic film that reduces 
rates of acid attack (Hansen et al. 2003; Doherty et al. 2007; Sikka et al. 
2008). The method has been used to help protect objects and surfaces 
that cannot be removed to a more protective environment (Ambrosi et al. 
2000; Mairani, Matteini, and Rizzi 2000). 
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Lime and Biocalcification
The final stage of the lime treatment consists of the application of a very 
thin coating of lime and fine aggregates rubbed firmly into the surface of 
the stone (see above under the Lime and Related Treatments section). The 
coating is intended to protect the stone, and it is reapplied as necessary. 
An alternative approach, which started first in France, utilizes microbes 
to produce a sacrificial surface layer of calcite (Orial et al. 1996; Le 
Métayer-Levrel et al. 1999; Castanier et al. 2000; Orial, Vieweger, and 
Loubiere 2003). Results from an EC project on bioremediation 
(BIOBRUSH) have been presented by Webster and others (Webster, 
Vicente, and May 2004; Webster and May 2006; May et al. 2008). 
Biocalcification in the context of conservation treatments is reviewed by 
Tiano (2008), and promising test data is presented by Zamarreño, 
Inkpen, and May (2009).

Colloidal Silica
Kozlowski, Tokarz, and Persson (1992) have adopted a rather different 
approach for forming a protective coating on calcareous stones. They 
have used sols of colloidal silica that deposit silica particles within the 
outer pores of the stone. The resulting surface is hydrophilic, but the pas-
sage of water through the pores is impeded by the presence of the parti-
cles. The material has been used at several sites to help protect vulnerable 
calcareous materials from acidic pollution (Stepien, Kozlowski, and 
Tokarz 1993; Mangio, Simpson, and Tokarz 1996). The method has been 
further developed by the conservator Egon Kaiser for use as a void filling 
and repair mortar at Petra and other sites (Kühlenthal, Kaiser, and 
Fischer 2000; Simon, Shaer, and Kaiser 2006). 

Biocides 
There is a long history of research into surface treatments that will kill 
biological growths and, if possible, inhibit regrowth. Such treatments must 
meet a large number of criteria, and this can prove difficult in the outdoor 
environment, where there is a continual supply of moisture to promote 
regrowth. They must not only kill the growth in the first place but also be 
resistant to new strains. They must not have any harmful effect on the 
stone itself, nor must they change its appearance. They must not be 
washed out by rainfall before taking effect or destroyed by ultra violet 
light, and they must be safe both to the person applying them and to the 
wider environment. The last requirement has been applied evermore strin-
gently over the past few years, with the result that a number of proven 
biocides have been banned by law. It follows that there is still a need for 
research in this area. The related area of biological stain removal has seen 
some development and success in removing some stubborn materials 
(Delgado Rodrigues and Valero 2003; Konkol et al. 2009). 

Most of the existing research on biocides has been concerned with 
algae, lichens, and higher plants like weeds, mosses, and ivy. Some of the 
research has been on cultures in the laboratory, while most of it has been 
based on site trials. Examples of such research are provided by Agarossi, 
Ferrari, and Monte (1990); Monte et al. (2000); and Anagnostidis and 
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 others (1992). The last also emphasize the need for regular observation and 
retreatment, and they suggest early warning systems to indicate the 
moment for retreatment. A promising new approach to biocontrol using 
anti-biofouling agents is presented by Cuzman, Tiano, and Ventura (2008). 
An interesting example of a complex fungal treatment is outlined by Orial 
and Brunet (2004), while a recently proposed treatment for lichens is 
removal by a low-pressure abrasive technique using dry ice (Rosato 2008). 
Laser treatment for lichens has been investigated by DeCruz and others 
(2009). A book reviewing the topic of biocides for natural and artificial 
stone is in preparation (Daniela Pinna, personal communication).

Caneva, Nugari, and Salvadori (1991; 2008) provide a valuable 
account of the many available biocides, which are normally applied to  
the surface of the stone by brush or spray. Portable objects may also be 
treated by fumigation: Elmer and others (1993), for example, report the 
use of ethylene oxide. Bassier (1989) reports the use of ultraviolet radia-
tion to sterilize mineral surfaces. Caneva, Nugari, and Salvadori (1991, 
p. 119; 2008) mention the possibility of preventive conservation by the 
deliberate introduction of suitable vegetation in the vicinity. Some water-
repellent treatments act to prevent biological growth by limiting available 
water. Low tech is still a useful approach, as shown by work using  
hot water vapor to kill lichens and algae (Orial and Bousta 2005). 

Sorlini, Falappi, and Sardi (1991) report the inhibition of fungal 
growth by a methylphenyl silicone resin, but other workers (Petushkova 
and Grishkova 1990; Santoro and Koestler 1991; Krumbein et al. 1993) 
have reported the opposite effect: the biodegradation of silicones. 

Relatively little research has been conducted on antibacterial 
treatments for stone. This is surprising, perhaps, in view of the extensive 
work on the role of bacteria in decay, but it may reflect the difficulty of 
finding antibacterial treatments with sufficient persistence (Gorbushina 
et al. 2003). Nonetheless, Orial and Brunet (1992) present a satisfying 
account of the use of streptomycin and kanamycin to substantially reduce 
bacteria in stonework at Elne Cathedral for a period of more than seven 
years, with a resulting cessation of decay. 

Biological Attack on Treatments
In some cases polymeric treatments of stone become food for microbes, 
leading to the production of organic acids and other biological activity 
related to the consumption of surface treatments (Cappitelli et al. 2007b; 
Cappitelli and Sorlini 2008). However, this biological affinity for certain 
otherwise insoluble, cross-linked organic material has also been used as a 
bioremediation treatment to remove the hardened glue from the surface 
of a fresco fragment in storage for twenty years (Antonioli et al. 2005). 

Note
1 This was also discussed in a paper presented by Simon Warrack at the Stone 

Consolidation in Cultural Heritage: Research and Practice Symposium, held in 
Lisbon, May 6–7, 2008.
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One might suppose that the most practical approach to stopping or 
reducing stone decay would be simply to apply a treatment and see if  
it works. But how can we tell if it is working? What do we really mean 
by “working”? How long does a treatment need to be left in place? Can 
things be speeded up a bit? Will it keep on working indefinitely? Will it 
work on other stones in other environments? What about other treat-
ments that come along while a lengthy evaluation of one is being 
 carried out? 

Price (1982) reviewed strategic approaches to the evaluation of 
treatments, an issue that lies at the crux of the conflict between “doing 
something” and not causing harm. It is a subject that is of vital impor-
tance. We need answers straightaway in order to devise responsible pro-
grams for the conservation of monuments that are decaying before our 
eyes. But if we act too quickly and apply the wrong treatment, we may 
make matters even worse. 

Many researchers have devised their own procedures for evaluat-
ing treatments, using a range of tests to build up an overall picture (Sasse 
and Snethlage 1996; Van Hees 1998; Moropoulou et al. 2000; Haake, 
Simon, and Favaro 2004; Laurenzi Tabasso and Simon 2006; Bracci et al. 
2008; Costa and Delgado Rodrigues 2008b). This is both inevitable and 
understandable, since individual researchers are constrained by the range 
of techniques that are available to them. Having a range of techniques 
also has the advantage that the procedure can be tailored to suit a partic-
ular stone and environment (Galán and Carretero 1994). It is unrealistic 
to think that any single procedure could fit all circumstances. However, 
it can be very difficult to compare the findings of one researcher with 
those of another, and there is a need for standardized procedures. This 
was the underlying objective of the RILEM (Réunion Internationale 
des Laboratoires et Experts des Matériaux, systèmes de construction et 
ouvrages) Commission 25-PEM (Protection et érosion des monuments) 
Working Group, albeit not fully achieved (RILEM 1980; Price 1982). 
The definition of individual test methods has had more success (see the 
following), although the “not invented here” syndrome frequently hin-
ders their widespread adoption. Some useful advances in standardized 
evaluation procedures have been made by CEN (Comité Européen de 
Normalisation) Technical Committee 346 (Fassina 2008). 

Chapter 3

Do They Work? Assessing the Effectiveness of Treatments
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It is convenient to divide evaluation procedures into two catego-
ries: those that characterize the stone shortly after treatment has taken 
place, and those that are concerned primarily with monitoring long-term 
performance. Questions that should always be asked before proceeding 
are: “What criteria apply, and is enough information available to sustain 
a recommendation to use this or that stone treatment?”

CHARACTERIZING THE TREATED STONE 

There are some properties that are helpful in building up an overall pic-
ture of the treated stone, even though they may not give any direct indi-
cation of the treatment’s effectiveness. These include the porosity and 
pore size distribution of the treated stone, its appearance, and the depth 
of the treatment’s penetration. The majority of tests, however, are con-
cerned with measuring properties that are known to change as the stone 
decays or with assessing the extent to which the treatment has met cer-
tain clear objectives. 

Properties That Change with Decay 
We have already looked at a number of tests that are intended to measure 
the extent of stone decay. These tests can obviously be applied to stone 
that has been treated with a consolidant or surface coating in order to 
determine whether there has been an improvement in performance. Such 
tests might include water uptake, Scotch tape tests, surface hardness, 
drilling resistance profile, and ultrasonic pulse velocity (Giorgi, Dei, and 
Baglioni 2000; Vergès-Belmin and Laboure 2007). The paper by Villegas, 
Vale, and Bello (1994) illustrates the difficulties of interpretation that 
may arise. If it is difficult to characterize decayed stone, then characteriz-
ing treated stone is doubly difficult. And if one treatment is difficult 
enough to characterize, work on stone treated with both consolidant and 
waterproofing agents shows that together they have a larger effect on 
pore structure than any single treatment (Iñigo et al. 2001). Then con-
sider the important issue of retreatment of treated stone. 

Meeting Objectives 
Some tests are designed to assess the extent to which the treatment is meet-
ing certain objectives. If the treatment is intended to impart water repellency, 
for example, then measurements of contact angle and water absorption are 
appropriate. If it is intended to provide protection against acid rain, then 
measurements of weight loss or of salt formation may be necessary. The logi-
cal outcome of this approach is the definition of a set of performance criteria 
against which a treatment may be judged; Sleater (1977) provides a good 
example. However, Sleater was unable to find any treatment that met all his 
criteria, and this may account in part for the lack of attention subsequently 
given to establishing overall criteria. 

Caution must be exercised when using tests intended primarily 
for untreated stone. For example, a crystallization test that relies on the 
absorption of a sodium sulfate solution is frequently used to determine a 
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stone’s resistance to salt weathering (Doehne 2002). The test should not 
be applied unthinkingly, however, to a stone that has been coated with a 
water repellent. Excellent performance in the test (e.g., Villegas and Vale 
1992, p. 1259) would not necessarily indicate increased resistance to salt 
growth; it could simply indicate that the water repellent had prevented 
the ingress of salt in the first place. 

Standard Test Methods 
Standard test methods are essential if one is to compare the results of dif-
ferent laboratories in any meaningful way. Even for a seemingly straight-
forward property such as water repellency, differing procedures yield 
differing results (Henriques 1992). Subsequent interlaboratory testing of 
some hygric European Norm (EN) standards has found that while many 
work well, vapor transmission tests were found to have large variations 
when done according to EN norms (Roels et al. 2004).

The standardization of test methods has been the objective of both 
national and international committees. Notable among them are the rec-
ommendations of the RILEM 25-PEM and 59-TPM (Traitement des mon-
uments en pierre) Working Groups (RILEM 1978; Pien 1991) and the 
standards published by the Italian Commissione NORMAL (Alessandrini 
and Pasetti 2004). It is regrettable that details of these test methods have 
not been more readily available and more widely translated. However, 
European standards for stone conservation are currently being integrated 
under the EN norms, with CEN Technical Committee 346 being led  
by Fassina (2008). The work incorporates the Italian NORMAL, German 
DIN, RILEM, and other national standards groups (Koestler and Salvadori 
1996; Alessandrini and Laurenzi Tabasso 1999; Fontaine, Thomson, and 
Suter 1999). Other work in building materials standards can be found in 
various ASTM (American Society for Testing and Materials) and RILEM 
committees (http://www.astm.org; www.rilem.net). 

The trend of research on standards has been to find and define 
quantitative parameters to characterize materials and help guide treat-
ments as a way to ensure compatibility between interventions and exist-
ing materials (Sasse and Snethlage 1997; Bromblet et al. 2002; Laurenzi 
Tabasso and Simon 2006; Laurenzi Tabasso 2008). However, the exten-
sive list of parameters that researchers suggest should be measured to 
evaluate treatments has been shown to be unrealistic in the field (Moraes 
Rodrigues and Emery 2008). As a practical matter, most treatment evalu-
ations have focused on changes in water uptake, color, ultrasonic mea-
surements, or drilling resistance profiles (Ferreira Pinto and Delgado 
Rodrigues 2008). 

LONG-TERM PERFORMANCE 

It is one thing to find a treatment that performs well in the short run; it is 
another thing altogether to be sure that it will keep on performing year 
after year when exposed to the weather. When a water repellent progres-When a water repellent progres-
sively loses it hydrophobic properties, we may say that its effectiveness is 

http://www.astm.org
http://www.rilem.net


52 Chapter 1

PROOF    1  2  3  4  5  6

52 Chapter 3

PROOF    1  2  3  4  5  6

decreasing. However, when the application of a stone consolidant leads 
(with time) to differential stress and the eventual detachment of the indu-
rated scales, we may say that it is showing a “delayed harmfulness.” Both 
are examples of long-term performance, yet they represent two distinct 
phenomena.

Natural exposure trials provide the only true test. They may be 
carried out in situ on monuments or on small blocks of stone that can  
be brought into the laboratory at intervals for evaluation. Either way, the 
trials can provide information only on a limited number of stones, treat-
ments, and environments, and it may be many years before reliable infor-
mation is obtained. A new range of treatments will inevitably have 
emerged in the meantime. Additionally, one is still confronted with the 
difficulty of evaluating the effectiveness of the treatment. The surface may 
look sound on the outside, but what is going on underneath? In situ mon-
itoring relies heavily on the techniques described in chapter 1. 

Nevertheless, there are a number of important questions that 
have been asked and answered by long-term natural exposure trials.  
For example, Moreau and others (2008) asked the question “Do water- 
repellent treatments reduce soiling in protected parts of monuments, and 
do they allow for easier cleaning?” They found after a ten-year study that 
silicone water-repellent treatments did not decrease the limestone soiling 
rate, while a fluorinated acrylic resin decreased it significantly. This result 
is encouraging and suggests that new-generation fluorinated acrylic resins 
could be used to protect stone against soiling. Not all fluorinated acrylic 
resins are suitable for every type of stone, however, since some are film 
forming and may peel away. Sulfation rates were not decreased by water-
repellent treatments. After measuring soiling and sulfation, the test slabs 
were cleaned by micro sandblasting and laser to determine if the coatings 
had changed the cleaning efficiency. The results show that treated samples 
typically were not easier to clean by micro sandblasting but instead 
became lighter in color than untreated samples. After laser-cleaning 
treated and untreated samples, the typical yellowing observed after laser 
cleaning was less noticeable on samples treated with silicon-based water 
repellents. The study also showed that the darker the samples were after 
exposure, the yellower they were once laser-cleaned (Moreau 2008). 

Another interesting example of long-term analysis of treatment 
performance is research by Favaro and others (2005; 2006; 2007), where 
they analyzed the effectiveness (1979–2005) of consolidants and water 
repellents on marble in the field in Venice and in the laboratory. One of the 
findings was that Paraloid B72 undergoes irreversible modifications over 
time and becomes impossible to remove completely. Thus, while a treat-
ment may be technically removable at the time of application and in com-
pliance with the dictum of reversibility, over time this may not be the case. 

Accelerated weathering chambers are extensively used to simulate 
decay (see, for example, Sasse and Riecken 1993), but they also introduce 
another layer of uncertainty (Warke and Smith 1998). Do they accurately 
reflect long-term behavior? By what factor do they increase the rate of 
weathering and decay? When consolidated stones are subject to artificial 
aging, it is common to call these trials “durability” tests. However, what 
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these trials essentially assess is not the durability of the consolidation 
properties but the delayed harmfulness introduced when a consolidated 
layer is present. A stone consolidant may keep its strengthening proper-
ties intact and show poor performance—delayed harmfulness—in an 
 aging test. 

It is noteworthy that most of the literature on long-term perfor-
mance is concerned with the behavior of the treated stone per se. There 
have been surprisingly few in-depth studies of the breakdown of the 
treatment itself. Even in the field of alkoxysilane consolidants, few 
authors have made systematic studies of the long-term weathering of the 
resulting silicone polymer (Favaro et al. 2006). Some authors, however, 
have highlighted the fact that treatments may serve as an energy source 
for microorganisms (Koestler and Santoro 1988; Petushkova and 
Grishkova 1990; Krumbein et al. 1993; Cappitelli et al. 2002; Cappitelli 
and Sorlini 2008). This important aspect had been largely overlooked 
hitherto. 

Documentation of Field Trials 
There is a regrettable tendency for researchers to set up field trials, to 
monitor them for a few years, and then to forget about them as further 
treatments become available. There is a need for systematic, long-term 
monitoring of trials. This is often hindered, however, by woefully inade-
quate or missing records. 

The availability of sophisticated databases offers the possibility of 
creating good, centralized records, and this possibility has been seized by 
a number of workers. Fitz (1991; 1996) described the MONUFAKT data-
base adopted by the German federal environmental agency, and Rosvall 
and Lagerqvist (1993) developed the EUROCARE database. More recent 
work on databases has focused on regional issues (Klamma et al. 2006; 
Hyslop et al. 2009) and specific projects (Inkpen et al. 2004; May et al. 
2004; Cassar 2004). The difficulty lies in persuading researchers to put 
reliable, comprehensive information into the system and in persuading 
others to use it in future years. This is on top of the difficulty of curating 
digital records over long time periods, during which hardware, software, 
and even institutions may rapidly become unsustainable. There is now a 
movement to encourage researchers to put machine-readable data directly 
onto the Internet (Grossenbacher 2009; Rosling 2009). Thus, while the 
technology is available and the potential benefits of data sharing are evi-
dent, this approach to databases has seen little implementation and sus-
tained effort, aside from project- or region-specific efforts (GCI 2009).
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Conservation is not immune to the vagaries of fashion—fashion that  
varies with both time and place. In England, for example, it was  
fashionable one hundred years ago to replace decayed sculpture with 
“copies”— contemporary interpretations of what the originals might 
once have looked like. By contrast, the current normal philosophy is  
to “conserve as found”—to keep original material and prevent further 
deterioration as far as is practicable. A further approach is common in 
the Far East, where the emphasis is more on preserving the function  
of a monument than on preserving the materials from which it is 
constructed. 

Numerous attempts have been made to codify conservation prin-
ciples and to introduce international uniformity. Notable among them are 
the 1964 International Charter for the Conservation and Restoration of 
Monuments and Sites (the Venice Charter), the Burra Charter (Australia, 
ICOMOS 1999), and Principles for the Conservation of Heritage Sites in 
China (China, ICOMOS 2000). It is beyond the scope of this publication 
to discuss conservation principles in detail, but it is relevant to note that 
many parties play a role in shaping conservation policy: the architect, the 
art historian, the scientist, the archaeologist, the conservator, the owner, 
and ultimately, the general public. The scientist may be convinced of the 
validity and importance of his or her results, but there are others to be 
convinced before the results can impact on conservation policy. One 
example of an interesting policy discussion of how research in heritage 
science is organized and carried out on a national level took place in 
2005–6 in the UK (House of Lords, Science and Technology Committee 
2006; House of Lords, Science and Technology Committee 2007) (see 
also: http://www.heritagescience.ac.uk). 

This chapter focuses on just three aspects of conservation policy: 
the responsible use of surface coatings, adhesives, and consolidants; the 
problems posed by multiple treatments; and recording. These three issues 
have been chosen because they have a common thread, which is the fact 
that no treatment can be expected to last forever. However much we may 
be lured into thinking that a treatment will last indefinitely (or, perhaps, 
until we are no longer accountable for it?), we must accept that all treat-
ments have a finite life. This has direct implications for conservation pol-
icy in the three areas indicated. 

Chapter 4

Putting It into Practice: Conservation Policy

http://www.heritagescience.ac.uk


 Stone Decay 55

PROOF    1  2  3  4  5  6

 Putting It into Practice: Conservation Policy 55

PROOF    1  2  3  4  5  6

RESPONSIBLE USE OF SURFACE COATINGS AND CONSOLIDANTS 

If a treatment is not going to last forever, should we use it in the first 
place? As we have seen above, we cannot be absolutely sure that the 
treatment will not lead to some unforeseen problem in the future. At 
what point should we take the risk of applying a treatment to an impor-
tant stone object/monument? 

Conservators paid homage for a long time to the principle of 
reversibility: no treatment should be used unless it can be removed at 
some future date, should that prove necessary. In the context of stone 
conservation, however, reversibility is more idealistic than realistic. It can 
be extremely difficult, in practice, to remove even the most soluble of 
treatments. It is wiser, therefore, to assume that a treatment, once applied, 
cannot ever be totally removed. Succeeding generations are going to have 
to live with the consequences of our actions. 

What should we do? Treatment is irreversible, in practice, but 
decay through neglect is irreversible too. The dilemma highlights the 
importance of preventive conservation, but there are instances where 
 preventive conservation is not enough. Ultimately it will be necessary to 
reach a carefully balanced decision, taking into account all aspects of 
each individual case. Sometimes we will conclude that treatment is justi-
fied; at other times, we may conclude that we can safely defer treatment 
for the time being. 

This polemic is all very well, but sadly it is often irrelevant. In 
many of the cases with which we are confronted, the stonework has 
already been treated by previous generations who were perhaps less cau-
tious or more optimistic than we may be. Often we do not know with 
any certainty the identity of the treatment, and often there may have been 
more than one treatment. This leads us to the problems of retreatment. 

RETREATMENT 

Virtually all research on stone treatment is based on the assumption that 
the treatment is to be applied to stone that has never been treated before. 
It is astonishing that so little work has been done on the effects that one 
treatment might have on another. While we hear much about reversibility, 
we hear little about retreatability, even though the latter is a far more 
important concept in practice (Teutonico et al. 1997; Van Balen, Ercan, 
and Patricio 1999; Hansen et al. 2003). 

Any consolidant that blocks the pores of the stone and prevents 
the subsequent application of another consolidant must clearly be 
regarded with some caution. The topic that demands research, however, is 
the physical and/or chemical interaction of one consolidant with another. 
The swelling of polymers under the influence of solvents is a well-known 
phenomenon, but little attention seems to have been paid to the swelling 
of a consolidant when a second consolidant is applied. It is possible that 
such swelling might cause damage to the stone—which can safely be 
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assumed to be fragile, or the consolidant would not have been applied in 
the first place. Moreover, one can imagine that the second consolidant 
will not be deposited as a coherent layer on top of the previous treatment 
but will form an intermingled mixture. It is not an appealing prospect, 
and it certainly deserves more attention. In one example, surface over-
strengthening following reconsolidation treatment has been examined by 
Meinhardt-Degen and Snethlage (2007) using biaxial flexural strength 
and modulus of elasticity as the criteria.

There is equally a need to ensure that there are no unforeseen 
consequences of multiple applications of maintenance coatings. For exam-
ple, recent work by Moreau and others (2008) has shown that the effec-
tiveness of a water-repellent coating is reduced if it is applied either on 
top of, or beneath, a quaternary ammonium biocide. 

RECORDING 

If we cannot preserve it forever, it is imperative that we make the best pos-
sible record of stone as it exists. Indeed, one could argue that recording 
should have a higher priority than preserving the stone itself— provided, of 
course, that we are confident that the records can, in turn, be properly 
maintained and curated indefinitely. This is a very big proviso, and it is 
one that also relates to the recording of field trials. All too often, careful 
records may be made of treatment applications, and they are duly lodged 
in filing cabinets, archives, or computer disks. But ten or twenty years 
later, when individuals have moved on or retired, these records can disap-
pear without a trace; much of the benefit of the trial is lost, and later con-
servators have no record of what was applied in the past.

Drawing and photography still have a place in recording, but 
attention is turning increasingly to techniques of three-dimensional 
recording. Molding and casting is the traditional technique, but it is not 
always practicable on very delicate or undercut surfaces. It is accordingly 
being replaced by techniques that do not entail any physical contact with 
the stone surface. 

Raking light photography, including PTM imaging, can provide a 
useful documentation of the surface texture of stone, which can be later 
draped over a digital elevation model (DEM). Stereophotography has been 
known for a long time but provides only an illusion of depth from a single 
viewpoint. Photogrammetry, a related technique, has been widely used for 
producing contoured images, but it still suffers from the drawback of a 
single viewpoint. Holography overcomes this problem, and its use for 
recording sculpture was first proposed by Asmus and others (1973). 
Nonetheless, the role of holography has been limited largely to the pro-
duction of images that, while visually striking, do not really provide a 
quantitative record. In this respect, laser scanning has taken the lead. 

The operation of a laser scanner to record stone weathering is 
described by several authors (Kleiner and Wehr 1994; Ball, Young, and 
Laing 2000; Warrack 2000; Bates et al. 2008; Tiano and Pardini 2008). 
The time it takes to scan an object depends upon its size, the desired res-
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olution, and the surface texture (shiny surfaces, such as polished or wet 
stone, are challenging). The primary output of the scanner is a digital 
record of the three-dimensional form of the object, and this can be used 
in a number of ways. It may be used purely as an archival record (e.g., 
http://archive.cyark.org); it may be used (in conjunction with subsequent 
scans) to monitor the deterioration of an object (Smith et al. 2008); and 
it may be used to drive a milling machine in order to produce a replica 
(Ahmon 2004). 

One of the great advantages of the laser scanner is that it does 
not entail any physical contact with the object and is hence suitable for 
even the most delicate surfaces. It has also been developed to the point 
where it is now capable of providing stereoscopic color images with a 
resolution of about 0.025 mm, which may be viewed, sectioned, and mea-
sured. Data processing and data management are significant challenges, 
and data clouds of 3D points are challenging to work with, in part 
because the 3D laser-scanning software equivalent of Adobe Photoshop 
does not yet exist and thus far, 3D software tends to be complex and 
expensive. Creating a DEM or 3D surface out of a cloud of 3D points 
acquired by the laser scanner requires significant processing and manipu-
lation. In order to monitor change over time, subsequent DEMs need to 
be registered in three dimensions using a number of control points, whose 
position is known not to have changed. 

The ability to produce highly accurate replicas of decayed stone-
work is an attractive proposition that has been seized upon by some con-
servators (Larson 1992; Ahmon 2004). Original sculpture can be taken 
indoors to the safety of a museum, while an exact copy can be put in its 
place. Nonetheless, there are those who argue that it may be inappropri-
ate to install an exact copy that will be missing features already lost from 
the original and that it may be preferable to re-create those features in as 
sympathetic a manner as possible. In any event, the costs of implementing 
such a process remain significant, and it has not yet become a common 
tool in the conservator’s toolbox. 

As recording technologies rapidly advance, notions about the pos-
sibility of digital preservation of monuments regularly crops up, but it 
behooves the conservation profession to act to prevent further damage to 
cultural heritage as its first priority.

http://archive.cyark.org
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Issues of stone conservation extend beyond conventional notions of 
masonry buildings, carved gargoyles, and beautiful stone entryways.  
The effort to preserve our heritage in stone includes research in the 
 conservation of rock art, the preservation of historic quarries (both for 
replacement stone and as historic industrial technology), the specialized 
conservation needs of some ornamental stones (from colored marble to 
mosaic stone), and the related arts of stone decoration (stone carving, 
polychromy, and wall painting). Finding replacement stone is an impor-
tant problem in maintaining historic structures. Often the lack of timely 
availability of suitable stone may result in one aspect of performance 
being emphasized over another (e.g., initial color match, match after 
weathering, durability, or compatibility with existing stone). Researchers 
have addressed this problem in different ways in different regions. 

Reviewing research related to heritage in stone is important to 
enhancing cross-fertilization between these specialized areas, which often 
have substantial interests in common. In this chapter we will focus on the 
first two issues—conservation of rock art and preservation of historic 
quarries—since the second two—ornamental stones and stone decoration 
—are well covered by existing reviews (Stieber 1995; Viles 2003; Henry 
2006; Pepi 2008). 

ROCK ART 

A simple definition of rock imagery, as rock art should be called, encom-
passes engravings (petroglyphs) and paintings (pictographs) on rock 
 surfaces (Ward and Ward 1996; Whitley 2001; Whitley 2005). While 
Lascaux in France and Altamira in northern Spain are among the best-
known sites, important rock art collections are to be found around the 
world, notably in the southwestern United States, Australia, South Africa, 
India, Scandinavia, and the Sahara. 

With respect to the state of the field of rock art conservation, 
“there has always been a large public interest in ancient pictures painted 
or carved on stone, but the archaeological study of rock art is in its 
infancy.”1 The same may be said for rock art preservation. One specialist 
has commented that, in Australia, “reactive management is in vogue and 

Chapter 5

Heritage in Stone: Rock Art, Quarries, and  
Replacement Stone 



 Stone Decay 59

PROOF    1  2  3  4  5  6

 Heritage in Stone: Rock Art, Quarries, and Replacement Stone 59

PROOF    1  2  3  4  5  6

not proactive research, conservation and planning” (Watchman 2005, 17). 
There are, however, signs of progress. Norway implemented an extensive 
program for rock art preservation, undertaking an unprecedented eight-
million-dollar, ten-year project between 1998 and 2008 for the research 
and conservation of three hundred important sites (Bjelland and Thorseth 
2002; Bakkevig 2004; Bjelland et al. 2005; Hygen 2006; Gran 2008). 
MacLeod (2000) provides a useful review of the complex issues sur-
rounding rock art preservation.

Interest in the conservation of cave paintings and rock art has 
increased significantly since the first edition of this book in 1994. The 
close relationship between the conservation of building stone, wall 
 paintings, and sculpture and the conservation of rock art panels is self 
evident, with research opportunities for cross-fertilization between these 
disciplines. 

Of paramount interest is the long-term preservation of fine sur-
face details in carved stone and paint layers on stone. Traditional building 
stone conservation has something to learn from rock art conservation, 
not least as a laboratory of long-exposed art in a range of stone types 
and environments. Now that more rock art can be reliably dated, ques-
tions of mutual interest such as the protective and destructive aspects of 
lichens on longer time scales can be considered. 

Approaches to the conservation of buildings and of rock art dif-
fer in interesting ways, with a number of rock art programs making effec-
tive use of volunteers for documentation and evaluating change over 
time, whereas in the building conservation field, such tasks have tradi-
tionally been the province of conservation professionals. A common prob-
lem in both fields is the need for useful monitoring, with Neville Agnew 
suggesting, “It is incumbent on us to find ways to slow rates of deteriora-
tion, which can vary enormously. One of the things not adequately stud-
ied is the rate of deterioration of rock art” (Dean et al. 2006, 11). 

Rock Art Conservation
A key problem in cultural resource management is the identification  
of those archaeological remains in need of immediate conservation. 
Traditional management of rock art has focused on keeping site locations 
confidential, providing visitor control at public sites, and performing doc-
umentation. Natural weathering processes and conservation interventions 
have often not been included in conservation management planning for 
rock art sites. Professional conservators specializing in rock art are few, 
while scientific research on rock art has tended to focus on characteriza-
tion and dating issues rather than conservation. 

The issue of rock art’s long-term sustainability and the fact that 
decisions must be made when allocating scarce resources suggest the need 
for a method of evaluating rock art stability. In some cases, rock panels 
have been documented to be stable over a fifty-year period (Hoerlé 2005), 
while other panels have been recorded as suffering rapid decay over a 
period of a few years (Meiklejohn 1995, 1997). The establishment of a 
Rock Art Stability Index has recently been proposed, involving regular 
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recording of surface loss (Cerveny 2005; Dorn et al. 2008) to address the 
need for data on rates of change and to build on earlier efforts to docu-
ment rock art (Turpin et al. 1979; Bell et al. 1996; Padgett and Barthuli 
1997; El-Hakim et al. 2004; Barnett et al. 2005; Chandler, Fryer, and 
Kniest 2005; Trinks et al. 2005; Chandler, Bryan, and Fryer 2007). A 
range of proxy measurements of variables thought to be related to long-
term stability or damage rate, such as surface temperature, have also 
begun to be evaluated to better manage risks to rock art (Hoerlé 2006). 

There are important differences in perception, resources, and 
scale when comparing traditional approaches to building stone conserva-
tion and rock art conservation. Buildings are large, freestanding, or inde-
pendent objects, while rock art is wholly embedded in natural settings 
(Dean 2001). This has raised the question of whether conservation treat-
ments developed for problems affecting some more-durable building 
stone, such as biocide treatment for lichen control, are appropriate for 
fragile rock art surfaces (Tratebas, Cerveny, and Dorn 2004). Methods 
for measuring building stone decay typically require extensive training 
and testing and therefore carry a relatively high cost (Fitzner and 
Heinrichs 2002). In contrast, rock art condition assessment is often per-
formed by volunteers using a necessarily simplified approach (Dorn et al. 
2008), due to lack of resources and the large scale of the problems. 

One of the most common deterioration factors for rock art is  
salt weathering, often from gypsum (Charola, Weber, and Bolle 1990; 
Hernanz et al. 2008; Meiklejohn, Hall, and Davis 2009). Strontium iso-
tope analysis has shown that road salt from deicing has migrated to a 
rock art site in Norway (Áberg, Stray, and Dahlin 1999) and has caused 
crystallization damage. Analysis of important rock art in Nine Mile 
Canyon in central Utah shows that the use of magnesium chloride salt as 
a treatment to reduce dust on dirt roads through the site appears to be 
having a deleterious effect on adjacent rock art (Kloor 2008). The dust 
raised by truck traffic on the road is also obscuring the visibility of some 
petroglyphs and paintings. Road dust has also been found to obscure 
rock art at other sites as well (Watchman 1998). 

The extremely well-preserved condition of cave paintings at 
Lascaux, Altamira, and elsewhere led to the realization of the critical role 
microbes play in the long-term stability of cave paintings. Rapid cave 
painting decay following disturbance of the microbiological environment 
has reminded conservators that our knowledge of microbial decay is still 
inadequate (Dornieden, Gorbushina, and Krumbein 2000). The debate over 
how to respond to microbial “outbreaks” on cave paintings has spilled  
over into the popular press (Allemand and Bahn 2005; Castellani 2005; 
Pringle 2008; Bahn 2008). Research into microclimate stabilization and 
shelters for rock art sites has found that such systems can significantly 
improve environmental stability and that human visitation often negatively 
affects the stability at cave sites (Dragovich 1981; Wainwright, Sears, and 
Michalski 1997; Hoyos et al. 1998; Brunet, Vouvé, and Malaurent 2000; 
MacLeod and Haydock 2002; Sanchez-Moral et al. 2005; Canals i Salomó 
et al. 2005; Brunet, Malaurent, and Lastennet 2006). 
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Progress in our understanding of how microbial activity can dam-
age rock art has improved over the past decade. For example, MacLeod 
and others (1995) have documented an increase in surface acidity related 
to increased seasonal moisture on Aboriginal rock art surfaces. Rapid 
lichen growth over rock art in Australia was found to be related to the 
amount of sunlight falling on rock surfaces, resulting in proposals for 
shelters and other minimally invasive lichen-control methods (Ford and 
Officer 2005). In South Africa, cracks in pigment layers are allowing 
water and fungi to penetrate rock paintings (Arocena, Hall, and 
Meiklejohn 2008). In an example of preventive conservation, researchers 
caution against removing any vegetation that provides thermal buffering 
of rock art surfaces (Hall, Meiklejohn, and Arocena 2007). 

In Norway, a series of proposals have been made to reduce the 
rates of damage to rock art, including sheltering, reburial, and modifica-
tion of environmental conditions to help neutralize acids and reduce oxi-
dation (Walderhaug 1998). A review of decay mechanisms at these sites 
found frost and tree roots to be of greatest concern, with acid rain and 
mineral leaching of lesser importance (Walderhaug and Walderhaug 
1998). The use of insulating materials on Scandinavian rock art was 
found to significantly reduce the impact of freeze/thaw cycles (Gran 
2008). A recent dissertation on lichen damage to rock art offers advice  
to heritage managers (Dandridge 2006). 

Fire has long been recognized as a deterioration factor for rock 
art. Research shows its effects are more widespread than previously 
thought, and preventive measures, such as clearing vegetation by hand, 
are recommended to reduce fire risk (Tratebas, Cerveny, and Dorn 2004). 

Similar problems have been found in different parts of the world. 
For example, conservation assessments of rock art sites in Bolivia found 
damage from graffiti, salts, humidity cycling, and uncontrolled tourism 
and proposed more integrated site management (Taboada Téllez 2007).  
A case study in Brazil similarly found salt efflorescence, dust, and animal 
activity (nests and droppings) resulted in fading, flaking, and loss of read-
ability of rock art panels (De Oliveira Castello Branco and Cruz Souza 
2002). A higher level of coordination and information sharing in rock art 
conservation research would be beneficial. 

Rock Art Treatment
Conservation treatments to date have included moisture control, consoli-
dation of rocks and pigments, removal of mud nests and lichens, graffiti 
removal, surface cleaning, and repair of scratches or gunshot damage 
resulting from recreational firearm use (Pearson and Clarke 1978; 
Andersson 1986; Lambert 1988; Rosenfeld 1988; Brunet, Guillamet, and 
Plassard 1997; Dean 1997; Dean 2001; Jeyaraj 2004). In a recent treat-
ment example, test areas of schist in the Côa Valley of Portugal were 
treated to evaluate the long-term effects of drainage and flood protection. 
Outcrops were covered with “reinforced soil,” and openings between 
blocks were filled with layers to encourage drainage and normalize the 
surface (Batarda-Fernandes and Delgado Rodrigues 2008). In another 
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example, a range of biocide treatments for algae on marble petroglyphs 
were tested, and several were found to be effective (Laver and Wainwright 
1995; Young and Wainwright 1995). 

A small core of specialist conservators has worked in the field 
of documentation and conservation of rock art sites (Dean 1998; 
Whitley 2006). An overview of treatments used on rock art is the sub-
ject of a master’s thesis (Dandridge 2000). The use of organic glue to 
stabilize fragments and cement mortar to fill cracks in rock art panels 
has been evaluated and criticized (Bakkevig 2004). Researchers have 
tested antifungal and anti bacteriological treatments to help mitigate 
biodeterioration of rock art (Gorbushina et al. 2003). The EC has spon-
sored research into rock art conservation, including a project titled 
“Non-destructive technique for the assessment of the deterioration 
proc esses of prehistoric rock art in karstic caves: The paleolithic paint-
ings of Altamira” (Zezza 2002). 

The final report on Norway’s ten-year rock art preservation pro-
gram concluded with an appeal to restrict the use of Mowilith2 DM 
123 S for conserving rock carvings, due to stability problems and the 
fact that Mowilith swells with the addition of ethanol. In Norway, etha-
nol is used to remove lichens, so Mowilith is now considered an incom-
patible material for which the long-term effects are unknown (Hygen 
2006). Over the evolution of the project, the primary investigator 
became more reserved concerning direct interventions, and the project 
moved increasingly in the direction of indirect and preventive methods. 
Norwegian research has also advanced the debate over whether lichens 
are protective, neutral, or damaging to rock art, finding some lichens are 
more aggressive than others (Bjelland and Thorseth 2002; Bjelland and 
Ekman 2005; Bjelland et al. 2005). However, current Norwegian guide-
lines discourage lichen removal through chemical treatment and indicate 
that “removal of lichens should only be done in the instances where 
there are binding plans for regular follow-up of the actions” (Hygen 
2006, 19). 

Approaches to cleaning of rock art sites also vary according to 
the specific environmental problems affecting the art. To remove graffiti 
at the cave of Rouffignac, the ceiling was cleaned with compresses soaked 
in a diluted ammonia solution, while in areas where the graffiti was more 
difficult to remove, special erasers of differing density were used (Brunet, 
Guillamet, and Plassard 1997). In Zimbabwe, paint stripper and toluene 
were recommended to clean the graffiti from rock art (Taruvinga 2003), 
because, when tested, laser cleaning was found to remove both the graffiti 
and the original paint layers. 

The overall impression gained from this literature survey is that 
the need to protect rock art has led to treatments being applied somewhat 
ahead of the scientific study of appropriate interventions. Nonetheless, 
looking beyond the material decay of rock art to the problem of increas-
ing tourism and the need to link rock art conservation efforts to local 
economic development has received some needed attention in recent years 
(Walderhaug Saetersdal 2000; Smith 2006; Deacon 2006). 
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Rock Art Documentation
Given the large number of rock art images and sites worldwide, docu-
mentation is seen as an important preservation tool. In a number of 
countries, documentation of rock art has been largely implemented by 
volunteers (Chandler, Bryan, and Fryer 2007). A survey of those involved 
in documenting UK rock art sites found a perception of rapid, variable 
degradation from the impact of humans and animals, superimposed over 
a slow background level of erosion caused by physical and chemical 
agents (Barnett and Díaz-Andreu 2005). Laser scanning of rock art as  
a way to monitor decay rate has been researched by several authors 
(El-Hakim et al. 2004; Barnett et al. 2005; Trinks et al. 2005). One of  
the reasons for making rubbings of rock art and gravestones is that fine 
details not visible to the naked eye can be recorded using this method. An 
attempt to record an example of fine detail using 3D laser scanning was 
undertaken (Díaz-Andreu et al. 2006), but scanning was not able to 
detect a spiral feature recorded in a rubbing in 1995. 

Good documentation has led to preventive conservation recom-
mendations, such as the employment of mitigation practices to reduce  
the abrasive effects of blowing sand (Keyser, Greer, and Greer 2005). 
Knowing that most of the four hundred thousand rock art sites around 
the world (Clottes 2006) will never receive a conservation intervention, 
let alone a conservation assessment, good documentation (often by volun-
teers or  students) has been the most common method of capturing a 
durable and accessible record of these sites (Padgett and Barthuli 1997; 
Swartz and Hale 2000; Larkin 2002). 

HISTORIC QUARRIES 

The preservation of historic quarries is of interest to the field of stone 
conservation for several reasons (Ashurst 2007, 306). One is that quarries 
provide important evidence of how stone production technology has 
evolved. This technology has a profound effect on stone durability, as we 
saw with the issue of the bowing found in thin marble panels. The thin-
ner panels were made possible by new production technology (Scheffler 
2001). Second, historic quarries may need to be reopened to provide 
replacement stone for important buildings. In Sydney, the local “yellow 
block” sandstone is being quarried when the foundations of modern sky-
scrapers are dug and stockpiled by the local conservation authorities for 
later use as replacement stone on nearby historic buildings. 

Perhaps the most extensive work on ancient quarries is the 
EC-sponsored project known as QuarryScapes (Conservation of Ancient 
Stone Quarry Landscapes in the Eastern Mediterranean), coordinated by 
the Geological Survey of Norway (2005–8), which dealt with issues of 
inventorying, managing, and conserving ancient quarry sites, with case 
studies in Egypt, Jordan, and Turkey (Abu-Jaber, Al Saad, and Al Qudah 
2006; Bloxam 2006; Degryse et al. 2006; Heldal et al. 2006; Caner Saltik 
2007; Heldal, Bloxam, and Storemyr 2007). The other main resource  
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for information on historic quarries is the research group ASMOSIA 
(Association for the Study of Marble and Other Stones in Antiquity; 
ASMOSIA.org). A series of conference proceedings contains the publica-
tions of geologists and archaeologists working on discovering ancient 
sources of stone, as well as stone transport, trade, conservation, and 
archaeometry (Schvoerer 1999; Lazzarini 2002; Herrmann, Herz, and 
Newman 2002). Another useful volume on Egyptian quarries is the work 
by Klemm and Klemm (2008). 

REPLACEMENT STONE

Related to the preservation of historic quarries is the issue of obtaining 
adequate replacement stone for repairs, which has become a critical 
 problem for many important sites as historic quarries are closed due to 
development and other economic pressures. Standards and resources for 
replacement stone vary enormously from country to country, and a criti-
cal review article on this topic with a global view is overdue. 

When repairs are being planned for a large building, quarrymen 
and geologists are often asked: “Which of the available stones will pro-
vide good durability and a compatible match to the existing stone?” 
(Jefferson et al. 2006). During the renovations of the British Museum,  
the “wrong” stone was used (Niesewand 1999). Recent research by 
Rozenbaum and others (2008, 345) found that for French limestones it 
was difficult, but not impossible, to “select substitution stones with satis-
factory aesthetic aspect and properties that enable to expect a satisfactory 
compatibility with the original stone.” 

Finding appropriate replacement stone requires tools for stone 
selection such as atlases and databases (Dingelstadt et al. 2000; Hyslop  
et al. 2009). A useful discussion of aspects of selecting replacement stone 
based on material properties can be found in two recent works (Přikryl 
2007; Yilmaz 2008). 

Clearly, to improve on the current situation, each country with 
significant heritage in stone should have a centralized lithological library, 
and an associated database, that includes not only the petrographic and 
mineralogical characteristics of its stone but also petrophysical ones, 
including pore size distribution, porosity, capillary uptake coefficient,  
and hydric and hygric dilatation.

To this end, English Heritage is working with the British 
Geological Survey and local experts to expand their database of English 
stone with a new GIS site called EBSPits (England’s Building Stone Pits) 
and to identify the most important building stones used, representative 
buildings, and historic quarries (English Stone Forum 2009; English 
Heritage 2009).

Research by Blanc and others (Blanc and Lorenz 1988; Blanc and 
Lorenz 1992; Holmes, Harbottle, and Blanc 1994) has helped to identify 
many quarries in France, in part with the goal of architects being able to 
better match replacement stone. The Bureau de Recherche Géologique  

http://ASMOSIA.org
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et Minière (BRGM) and the Laboratoire de Recherche des Monuments 
Historiques (LRMH) are collaborating on a project to gather into a data-
base all the information related to the stones of monuments, ancient 
quarries, and modern quarries (V. Vergès-Belmin, personal communication). 

Recent work by Hyslop and others (Hyslop and McMillan 2004; 
Hyslop 2008) discusses the challenges of finding replacement stone for 
the important and well-known stone buildings of Glasgow and 
Edinburgh. In Glasgow, Duthie and others (2008) found significant varia-
tions in the extent of microbial growth on a range of replacement sand-
stone blocks that had been exposed for twelve years, illustrating the 
importance of selecting appropriate replacement stone. 

Related to the issues of stone replacement is the general question 
of loss compensation for stone. This topic has been reviewed by Griswold 
and Uricheck (1998), who suggest that this area be prioritized in future 
research and evaluation. 

Notes
1 Whitley 2001, book jacket.

2 Mowilith is an aqueous emulsion of polyvinylchloride, polyvinylacetate, and 
different stabilizing agents.
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WHAT IS WRONG? 

The purpose of this chapter is to suggest some ways in which our 
research might be made more effective. The views expressed are unasham-
edly personal, and not everyone will agree with them. It is hoped, none-
theless, that they will stimulate some serious thought and discussion in 
order that limited research resources may be put to the best possible use. 

In the last fifteen years, three factors have helped increase the 
effectiveness of research: the entry of topflight researchers into the field, 
increased access to existing research via Internet databases and PDFs, and 
the increase in research done by universities, particularly those participat-
ing in EC-sponsored programs. Much work in conservation and conser-
vation research is published only as “gray literature,” and the Internet  
has vastly increased accessibility to this material (see, for example:  
http://repository.upenn.edu/hp_theses; http://www.ncptt.nps.gov/product
-catalog/). There have been some corresponding changes that have 
decreased the effectiveness of research over this period as well: the decrease 
in funding of research programs at the institutional and national level 
(BRE, CSIRO, GCI, ICCROM, national research programs, etc.),1 the 
need to test university innovations and transfer them to the field,  
and the need for longer-term research programs. These factors are  
discussed in more detail below and in the final chapter.

Publications 
The number of published papers relating to stone is growing relentlessly. 
Every four years a large stone conservation meeting is held, and this is 
reflected in the overall pattern of publication. 

On the face of it, this must surely be welcomed. It indicates the 
growing concern about stone and the growing numbers of researchers 
who are working on stone, many of whom bring important new perspec-
tives and discoveries. However, the quality of many of the papers is still 
disappointing. Why?

The following criticisms are often made: 

•	 The	same	material	is	published	on	more	than	one	occasion.	
While it is acceptable to publish interim reports on a major 
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piece of work, there is no excuse for publishing the same mate-
rial, with only minor variations, time and time again. 

•	 Many	papers	consist	of	the	application	of	well-tried	procedures	
to a specific building or monument. The results are of inter-
est only to a limited audience and should be written up as an 
internal report of the organization carrying out the research. 
They do not warrant full publication in journals or conference 
proceedings. 

•	 Many	papers	fail	to	set	the	research	into	context.	They	are	
essentially descriptive; they describe the work that was under-
taken but do not say why it was done. 

•	 Many	papers	neglect	to	indicate	the	significance	of	the	results.	
Having failed to say why the work was done, they provide 
insufficient discussion of the results and therefore do not 
explain what, if anything, was achieved. The reader is left won-
dering whether any advance was made and, if so, what it was. 

•	 Few	papers	identify	promising	avenues	for	further	research.	
•	 Underlying	the	previous	problems	is	the	frequent	neglect	of	 

the scientific rigor of hypothesis—experiment—conclusion. 

Conferences 
Conferences provide unparalleled opportunities for meeting fellow 
researchers: for making new contacts, finding new collaborators, compar-
ing notes, sharing ideas, and keeping up to date. They also provide a 
much-needed opportunity to stop and think and to see one’s research in  
a broader context. 

On the negative side, however, conferences often provide an 
opportunity for publishing substandard, nonrefereed work. The prolifera-
tion of conferences, however desirable it may be, can all too easily lead  
to a proliferation of poor-quality papers. These and related issues have 
recently been addressed by the Torun Guidelines for stone meetings, 
which serve as an example of what can be done to improve stone confer-
ences (see sidebar, page 68).

Standards 
The lack of internationally agreed-upon standards, be they for nomencla-
ture or for testing procedures, hinders the interpretation, understanding, 
and evaluation of research. Without standards, there is no common lan-
guage. The situation is slowly improving, with the adoption of English as 
the current language of science, which provides greater opportunities for 
communication and collaboration among researchers and research 
groups, and with collaborative tools and more universal evaluation stan-
dards beginning to be adopted (Fassina 2008; European Committee for 
Standardization = Comité Européen de Normalisation), such as drilling 
resistance and ultrasonic testing. 

Conduct and Quality of Research 
Research into stone conservation demands an interdisciplinary approach. 
Many researchers, however, find themselves working alone or in relatively 
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The Torun Guidelines for 
Conferences in the Field of  
Stone Conservation 

Introduction
In an era of increasing informa-
tion and changing dissemination 
technology it seems an appropri-
ate moment to reflect on ways to 
improve the quality and accessibility 
of knowledge in the field of stone 
conservation.

As knowledge increases rapidly, 
teams working on stone conservation 
have become more specialised and 
often present their results at special-
ist meetings. This trend may increase 
the potential for isolated perspectives 
and the risk that knowledge may not 
reach its intended goals.

The general congresses on 
stone deterioration and conservation, 
organised every 4 years since 1972 
give a useful snapshot of the differ-
ent trends of stone conservation and 
provide a multidisciplinary forum 
for discussion, complementing the 
specialist meetings. However, it can 
be difficult for them to encompass 
all the different trends and fields of 
stone conservation.

In recent decades there have 
been a number of calls to improve 
the quality and impact of knowl-
edge in the conservation field. In 
response, there have been a num-
ber of improvements, such as more 
review articles and multi-author 
textbooks which give new research-
ers some of the background needed. 
Electronic publication of full text 
articles from most journals makes the 
peer-reviewed literature more readily 
available. Nevertheless, most confer-
ence proceedings still have limited 
electronic distribution.

With the aim of improving 
the quality and the dissemination 

of knowledge through congresses 
in the field of stone conservation, 
the 11th International Congress on 
Deterioration and Conservation 
of Stone, and the 13th meeting of 
the ICOMOS International Stone 
Committee, which met in Torun 
on September 15th to 20th 2008, 
adopted the following text.

The Guidelines

1 Planning
When planning conferences organis-
ers should review other conferences 
already scheduled in the field, in 
order to separate their own confer-
ence from others by at least six 
months. The aim is to increase the 
potential pool of participants and 
to increase the likelihood of original 
research being presented.

2 Selection of papers
The selection of papers for formal 
conferences should be based on a 
thorough review by at least two 
experts. Organisers, assisted by 
their scientific committees, should 
check for and refuse ‘doublons,’ i.e. 
papers that have been, or are about 
to be, published in proceedings 
of another conference. Published 
papers (whether oral or poster) 
should meet minimum standards, 
including:

•	 	precisely	defined	research	

methodologies 

•	 appropriate	reference	citations	

•	 advancing	knowledge	in	the	field.

3  Communication among 
 participants

Organisers should encourage formal 
and informal communication among 
conference participants. These may 
include discussion sessions, panel dis-
cussions and workshops.

4  Seeking quality and measuring 
outcomes

Organisers, assisted by their scientific 
committees, should ensure good qual-
ity papers. In addition, organisers 
should measure the outcomes of their 
conference. Measures adopted may 
include reviews of the conference 
and opportunities for user feedback, 
such as a web page for participant 
responses, and quality rankings.

5 Dissemination strategy
To facilitate rapid dissemination of 
the ideas presented at the conference, 
organisers should plan for electronic 
dissemination of the proceedings. 
This should be arranged within a 
short period of time (e.g. a year) to 
ensure that the results achieve a wide 
and long-lasting distribution.

The following persons participated  
to the drafting of the Torun 
Guidelines: 
Akos Török, Hungary — Clifford 
Price, UK — Dagmar Michoïnova, 
Czech Republic — Daniel 
Kwiatkowski, Sweden — David 
Young, Australia — Elsa 
Bourguignon, France — Eric Doehne, 
USA — Hilde De Clercq, Belgium — 
Jadwiga W. Lukaszewicz, Poland — 
Jean-Marc Vallet, France — Jo-Ann 
Cassar, Malta — Johannes Weber, 
Austria — Jose Delgado Rodrigues, 
Portugal — Milos Drdacky, Czech 
Republic — Marisa Laurenzi 
Tabasso, Italy — Myrsini Varti-
Matarangas, Greece — Philippe 
Bromblet, France — Stefan Simon, 
Germany — Vasco Fassina, Italy — 
Vasu Poshyanandana, Thailand — 
Véronique Vergès-Belmin, France.

http://www.iccrom.org/eng/news_
en/2009_en/field_en/01_01Torun 
Guidelines_en.pdf.

http://www.iccrom.org/eng/news_en/2009_en/field_en/01_01TorunGuidelines_en.pdf
http://www.iccrom.org/eng/news_en/2009_en/field_en/01_01TorunGuidelines_en.pdf
http://www.iccrom.org/eng/news_en/2009_en/field_en/01_01TorunGuidelines_en.pdf
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small teams. As a result, research can become too narrow, failing to take 
into account factors that might seem self-evident to somebody trained in 
another discipline. For example, an analytical chemist might look primar-
ily at the composition of a stone, while a materials scientist would per-
haps focus on its behavior, a biologist could discover a new species of 
microbe in the pores, an engineer would core the stone and measure its 
strength, and a geologist might make a thin section and evaluate its 
microtexture. 

This recalls the famous story from India of the truth being similar 
to a group of blind men trying to describe an elephant by touching it, 
when each has access to just a single, and different, part of the beast 
(trunk, leg, ear). A corollary of this situation is the phrase: “When the 
only tool you have is a hammer, it is tempting to treat everything as if it 
were a nail” (Maslow 2006, 15). It is useful for researchers to work 
closely with conservators and conservation architects to mitigate such 
tendencies. At worst, researchers can become so introspective that they 
take little or no account of work being undertaken elsewhere; the 
researcher whose citations are solely to his or her own work is clearly 
falling into this trap. 

A great deal of research into stone is conducted at a rather super-
ficial level, but this is changing. The first volume of this book complained 
that much of the work on consolidants, for example, was very empirical, 
and that a particular material would be evaluated simply because it was 
available, not because there were sound theoretical reasons for believing 
that it would be effective. Some work on decay mechanisms was seen as 
equally superficial. However, the depth of research has increased enor-
mously in the intervening years, and some areas have changed beyond 
recognition, thanks to the contributions of exceptionally talented individ-
uals. Nonetheless, there is still a danger that research can become so the-
oretical that it loses sight of its main purpose. The researcher needs to  
be fully aware of what is desirable and practicable from a conservation 
standpoint, while conducting research at a level that is deep enough to 
solve the fundamental problems. 

Some of these issues were summarized succinctly by Chamay 
(1992) in his closing remarks at a conference: 

Je m’inquiète un peu de constater que vos recherches 

sont menées sans concertation organisée, chacun travaillant de 

son côté, l’échange d’information restant très limité . . . J’ai aussi 

le sentiment que la tendance générale parmi les chercheurs est  

de rester confiné dans sa spécialité . . . Attention à l’arbre qui 

cache la forêt! Avant d’entrer dans le détail, une appréciation 

d’ensemble est nécessaire. [I am a bit worried to notice that you 

are carrying out your research without organized dialogue, each 

person working in his or her own corner, the exchange of infor-

mation remaining very limited . . . I also have the feeling that the 

general tendency among researchers is to remain confined to 

one’s own specialty . . . Don’t fail to see the wood for the trees! 

Before going into detail, an assessment of the whole is necessary.]
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It is interesting that one of the concerns that led to a recent conference 
on the conservation of the cave at Lascaux (AP 2009) was the need to 
have specialists working more closely together and synthetically, just as 
Chamay suggested. 

Getting the Message Across 
There is no point in doing research unless the outcome can be applied in 
practice. This does not mean that there is no place for long-term, strategic 
research, but that any worthwhile research must ultimately contribute to 
the care and conservation of the heritage. 

There are many ways of getting the message across, including lec-
tures, publications, personal contacts, and advice on specific problems. 
The message needs to reach other researchers, but it must also reach, for 
example, conservators, architects, archaeologists, and administrators. It 
does not follow automatically that a good researcher is a good communi-
cator, and all researchers should ask themselves whether their research is 
achieving the full impact it deserves. The Internet has changed expecta-
tions about the ease of access to high-quality information. 

PUTTING IT RIGHT 

What can be done to make our research more effective? There are  
no simple solutions. While some steps may be taken by individual 
researchers, other solutions lie with research administrators, conference 
organizers, editors, publishers, training institutions, and funding bodies. 
The following proposals deserve consideration. 

Quality, Not Quantity 
Any institution that funds research may reasonably expect to see some 
return for its money. This necessitates some means of measuring research 
output. How else may the institution be sure that its money is being well 
spent? The simplest indicator, and one that appeals to many administra-
tors, is the number of papers that result from the research. It is an 
 objective, quantitative indicator, but it is one that undermines quality. 
Individuals find themselves under immense pressure to produce a certain 
number of publications each year, and it is no wonder that quality suf-
fers. Publishing the same thing several times is an easy way of meeting 
the target. Other tactics include the publication of a string of interim 
reports, the publication of material that warrants no more than an inter-
nal report, publishing papers that report on what one proposes to do  
in the future, and publishing papers with a long and unjustified string 
of authors. 

Journal impact factors and citation indices, such as Google 
Scholar, ISI Web of Knowledge (Science Citation Index), and Scopus (by 
Elsevier), can provide an indication as to what references and journals are 
having the most effect. The number of times an article is cited is tracked 
as a measure of its popularity and potential usefulness. Journals that con-
tain articles that have higher rates of citation have higher impact factors. 
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The use of citation indices is rapidly increasing in biology and medicine 
as an important way to filter the wheat from the chaff of research publi-
cations and to provide employers with an independent assessment of 
quality, such as the H-index (http://en.wikipedia.org/wiki/H-index). As 
with all rankings, the system is open to abuse. Popularity is not the same 
as quality, since once an article begins to be cited, its chances of being 
cited again increases. Assessment of quality in research is not a simple 
matter of numbers. It entails a high degree of subjective judgment, both 
by research managers and by other researchers. Funding bodies must be 
prepared to appoint research managers whose judgment they trust and 
then be prepared to accept that judgment concerning the quality of 
research being conducted under those managers’ supervision. They must 
be seeking value for money, which entails both quality and quantity, 
rather than quantity alone. 

Conferences and Other Models for Advancing the Field
Other types of scientific meetings should be considered as role models, 
such as workshops, the Gordon Research Conferences (GRC) (2010),2 the 
Dahlem Conferences (Freie Universität, Berlin 2006),3 and other forums 
based on new technologies, such as online discussions of presentations at 
conferences and online proceedings where attendees can post questions 
and comment on articles. Conference organizers today can take for 
granted that most participants possess a Wi-Fi–enabled laptop, netbook, 
or cell phone. Meetings where participants can actually take part in 
 discussions, interact, and comment in concrete ways are often more pro-
ductive than conventional meetings at which participants are often over-
whelmed by too many presentations, too much information, and too little 
time for useful discussion. 

Conference Papers 
It is a common practice for employers not to fund an individual’s atten-
dance at a conference unless he or she is presenting a paper or a poster. It 
is a practice that makes the research administrator’s life much simpler, 
but one that again encourages the production of superfluous publications. 
To solve this problem, one option would be amending the conference 
attendance policy to include publishing a conference review as a qualify-
ing activity. At a large conference, multiple reviewers, who may be paid 
small honoraria for their contribution, can cover parallel sessions. A good 
conference review is often worth more than several case studies. 

Selection of Conference Papers 
Another important way of preventing the publication of substandard 
 conference papers lies with the conference’s technical committee. All too 
often, papers are selected on the basis of an abstract submitted some 
eighteen months or more before the conference. At that time, the research 
will almost certainly not have been completed; indeed, it may not even 
have begun. The prospective author, therefore, makes a guess as to the 
likely outcome of the research and writes an abstract that strikes a deli-
cate balance between the specific and the noncommittal. The technical 

http://en.wikipedia.org/wiki/H-index
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committee reviews the abstracts and, on this flimsy evidence, decides 
which papers to accept. By the time acceptance is gained, the author has 
twelve months or less in which to complete a paper—regardless of how 
the research is going. Then, the technical committee and the editors, when 
they finally receive the paper, have little option but to publish it much as 
it stands. 

Not all conferences operate this way, but many do. It means that 
much of the literature of conservation has been subjected to the very min-
imum of refereeing, if any. Quality assurance is all but nonexistent. 

If preprints are to be issued at the time of the conference, there 
may be insufficient time for full refereeing. Nonetheless, a significant step 
forward could be made if technical committees were to insist on seeing 
the full text of a paper before deciding whether to accept it for presenta-
tion and publication. It is true that it takes longer to read a paper than it 
takes to read an abstract and that technical committees are composed of 
busy people. However, it does not take long to decide whether a paper 
consists largely of previously published material or whether it is of local 
interest only. A lot of substandard papers could be weeded out very 
quickly. Another problem is that authors may not be prepared to take the 
time to write a full paper if there is a risk that it may not be accepted. 
Too bad—if poor papers were weeded out, there would be correspond-
ingly more space for good papers, so the author who has something 
worthwhile to say need not fear rejection. 

Refereeing 
Ideally, all published material should be subjected to peer review. It is a 
process that is open to criticism in that it slows down publication and 
can fall afoul of an ill-informed or prejudiced referee. It is, however, the 
fairest way of ensuring that papers are of sufficient quality to merit publi-
cation. Conservation has suffered greatly from the fact that so much of 
its literature has been in unrefereed publications. As one conservation 
 scientist observed: “Why try harder, when you can get away with 
being sloppy?”

Collaborative Programs 
The time has long passed when a well-educated individual might have a 
working knowledge of the whole of science and the humanities. We are 
all highly specialized in our individual fields, and we need to collaborate 
with specialists in other disciplines if we are to solve the very broad prob-
lems posed by stone conservation. Not only do we need to collaborate 
with other conservation scientists from different disciplines, but we also 
need to draw in talented researchers who are not involved in conserva-
tion. Such collaboration is not without dangers (Torraca 1999), but it is 
essential nonetheless. 

Some funding bodies are in a position to enforce collaboration. 
An example is to be found in EC-operated programs. Research projects 
are not funded unless they entail genuine collaboration between partners 
in more than one member state, with each partner making a clearly 
defined contribution based on a particular expertise. In a relatively short 



 Stone Decay 73

PROOF    1  2  3  4  5  6

 Doing Better: Increasing the Effectiveness of Research 73

PROOF    1  2  3  4  5  6

time, these programs have brought about a much greater degree of col-
laboration between relevant European research institutions. 

Training 
Good research requires good researchers. To be a good researcher in the 
scientific aspects of stone conservation, one needs a thorough grounding 
in science, training in research, and a sound appreciation of conservation 
issues. These qualifications are not readily found in any one individual, 
and a significant proportion of “conservation scientists” do not have suf-
ficient knowledge of science to enable them to undertake research at a 
fundamental level. They may, for example, have trained primarily as con-
servators; although their training may well have included some science, 
they are conservators first and scientists second. As a result, a good deal 
of research is rather superficial. 

Much attention has been paid to the training of conservators, and 
lists of training courses are readily available (Rockwell 1994) (also see 
appendix, List of Conservation Related Sites, pages 150–51). Less atten-
tion has been paid to the training of conservation scientists, although 
there has been some useful discussion of the different approaches to 
training researchers (Mazzeo and Eshøj 2002; Chiari and Leona 2005; 
Trentelman 2005; Mazzeo and Eshøj 2008). There are very few training 
programs for conservation scientists (http://www.episcon.scienze.unibo.it), 
and a worldwide survey of current training opportunities would be 
advantageous. A number of possible pathways can be envisaged: doctoral 
research followed by a fellowship in a major conservation institution or 
museum, for example, or a master’s degree in a particular aspect of con-
servation science. A first degree in a scientific subject should be a prereq-
uisite, in any event. 

Some attention also needs to be given to ways of attracting high-
caliber students to conservation. The subject does not, on the whole, 
attract the outstandingly capable researcher. Such individuals are more 
likely to be found in medical research, in nuclear physics, or in military 
research, where they will benefit from better funding and from the stimu-
lus of working in large, highly focused teams. Ways must be found of 
bringing conservation to the attention of science students during the 
course of their first degree and of presenting stimulating and challenging 
career opportunities. Part of this issue is that to be more successful, the 
conservation field needs to scale up its ambitions and build support for 
larger-scale, coordinated projects to compete with “Big Science.” In the 
United States the Mellon Foundation has been effective in bringing scien-
tists into museums through endowed chairs;4 however, permanent posi-
tions dedicated to monuments research remain unconscionably rare 
worldwide—an important gap that could be filled with the requisite  
institutional support. 

Reviews 
The conservation literature is still remarkable for its relative lack of 
scholarly review articles. In all the mainstream scientific disciplines,  
the need for state-of-the-art reviews is well recognized, and the authors 

http://www.episcon.scienze.unibo.it
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highly acclaimed. The conservation literature, by contrast, is full of 
 isolated pieces of work, with very little effort being made to pull the 
information together. 

Review articles enable researchers to put their work in context 
and to see where further work would be worthwhile. However, they are 
not easy to write. They require a lot of time and a high degree of compe-
tence. They may have to be specifically commissioned and funded. The 
National Center for Preservation Technology and Training (NCPTT)  
has funded some small grants for researchers to write reviews, and  
the International Institute for Conservation (IIC) journal Reviews in 
Conservation has proven itself to be an extremely useful resource to the 
conservation community.5 Progress is certainly being made, but there is 
plenty of scope for more.

Notes
1 BRE = British Research Establishment; CSIRO = Commonwealth Scientific and 

Industrial Research Organization, Australia; GCI = Getty Conservation Institute; 
ICCROM = International Centre for the Study of the Preservation and Restoration 
of Cultural Property, Rome (UNESCO). 

2 Gordon Conferences are organized around a theme, with few presentations, much 
discussion, and with contributions “off-record” to encourage free exchange, often 
of unpublished material. 

3 “The Dahlem Conference in Berlin is a unique forum for analyzing, in a 
multidisciplinary way, complex topics. For five days fifty selected participants are 
cloistered together, divided into four groups. Each group studies background 
papers prepared by a few selected individuals, which serve as a basis for further 
discussion and the preparation of a report. The goal of these reports is to define 
what is not known in the field rather than rehearsing what is known and to 
present ideas for further research and their priorities. The four group reports are 
hammered together under the guidance of a rapporteur” (Wolff 1992). 

4 Museum science involves research and service work in support of curators and 
conservators and revolves largely around issues of technical art history as well as 
art conservation.

5 Regrettably, the recent financial crisis, or “great recession,” has led to the 
consolidation of the journal Reviews in Conservation into the IIC journal Studies 
in Conservation.



Chapter #

Chapter Title

Authors’ names

PROOF    1  2  3  4  5  6

The first edition of this book was written at a time when research on 
stone seemed to many people to have stagnated. That perception has 
changed completely in the intervening years, and real progress has been 
made in many areas. Significant gaps in knowledge have been substan-
tially narrowed, including many of the fundamental aspects of damage to 
stone from cycles of frost, salt, moisture, and heat. In a number of cases 
our descriptive nineteenth-century notions of “weathering” have now 
been deeply probed and quantified, measured in the field, and replicated 
in laboratory experiments. These insights have in some cases led to inno-
vations in the preventive treatment of stone, with more sophisticated 
models of damage advancing hand in hand with more quantitative obser-
vations from field measurements and laboratory experiments. 

Five important trends can be identified: 1) a perception that our 
understanding of fundamental conservation problems is far ahead of solu-
tions to these problems; 2) new solutions to stone conservation problems 
often need long-term testing, but resources for such testing are lacking; 
3) climate change is an important issue in stone conservation; 4) biodete-
rioration should be increasingly understood in an ecological context; and 
5) the locus of stone conservation research activity may be beginning to 
shift to countries such as China, India, Brazil, and South Korea. Heritage 
conservation in these countries is becoming a national priority due to 
unacceptable rates of heritage loss and greater economic success. 

The traditional neat classification of weathering mechanisms  
into physical, chemical, and biological factors is receding as an accepted 
approach to this field. A new approach emphasizes material behavior  
and the important interrelationships between environmental, material, and 
historical variables. As is the case with most natural systems, a few key 
parameters often dominate in each weathering process (Goudie 1995),  
and the result can be nonlinear and even chaotic, in contrast to previous 
assumptions about linear rates of erosion. This schism is reminiscent of the 
nineteenth-century debates over catastrophism and Darwinian gradualism 
(Viles 2005; Giavarini et al. 2008). 

The straightforward concepts of magnitude, frequency, and dose-
response developed for air pollution studies on stone (Charola and Ware 
2002) are being modified by ideas of thresholds, feedback loops, and non-
linearities (Goudie and Viles 1999; Norwick and Dexter 2002) within the 
large framework of conservation risk assessment (Brokerhof et al. 2007). 

Chapter 7

What Has Changed? Some Thoughts  
on the Past Fifteen Years 
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One example of this profound shift over the past two decades is the con-
servation of the wall paintings of Queen Nefertari since the late 1980s. 
Development of the conservation program went through several steps: 
1) assessment, monitoring, and conservation of the wall paintings in the 
late 1980s; 2) visitor impact (carrying capacity) studies in the 1990s; and, 
3) most recently, research that suggested that the greatest risk to the wall 
paintings appears not to be humidity cycles that might activate salt 
weathering but instead rare flash floods in the area. Accordingly, the need 
to prepare for rare, but catastrophic risk has assumed the same impor-
tance as the need to manage more gradual risk factors (Agnew and 
Maekawa 1999; Wüst and Schlüchter 2000; McLane et al. 2003). 

In one of the most important trends over the past fifteen years, 
universities have embraced many of the compelling multidisciplinary 
 challenges found in stone conservation, bringing to bear new, topflight 
researchers and new tools from materials science, cement chemistry, geo-
technical engineering, geology, physics, geochemistry, microbiology, and 
geomorphology, and adding these to the historic tradition of chemists at 
the center of much research in stone conservation. As a consequence, the 
standard of research has improved beyond recognition in some areas, and 
many more papers are being published in the peer-reviewed mainstream 
literature. The publication of an increasing number of reviews is also 
much to be welcomed.

One discipline that should be added to the mix is that of (for 
want of a better term) heritage hydrology. This is the nanometer- to 
 kilometer-scale study of the effects of water transport on the stability of 
historic architecture and monumental complexes. Archaeologists have 
long realized that hydrology was critically important in sustaining the 
cultures that built Tiwanaku, Copán, Moenjadaro, Baghdad, Petra, and 
Angkor, for example. And for architects, one of the key elements of build-
ing design is how a structure sheds water. Increasingly sophisticated mod-
els of moisture transport and material behavior are developing rapidly 
(such as WUFI, ASTRA, or CESA) (Sedlbauer and Künzel 2000; Holm 
and Künzel 2003; Franke et al. 2007). These areas have also benefited 
from advances in the modeling of the structural behavior of building 
materials (Binda 2007). Future researchers in monument conservation 
should be encouraged to specialize in heritage hydrology.

Multidisciplinary research has been strongly promoted by 
EC-funded research projects over the past fifteen years, resulting in an 
experienced network of about eighty multi disciplinary researchers across 
Europe with an interest in the subject. Indeed, it could be argued that the 
gradual evolution of this informal research network has been of even more 
value in promoting research than the projects themselves. Monuments 
research networks supported by  similar levels of funding are currently 
lacking in the Americas and Asia. 

It is uncertain whether overall research funding has improved or 
declined—there do not appear to have been any attempts to gather the 
necessary data. There is, however, a general impression that expenditure 
on stone research has increased somewhat within the university sector 
and declined substantially elsewhere. For example, expenditure by gov-
ernments and NGOs, such as BRE, CSIRO, EH, GCI, ICCROM, NPS, 
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NCPTT, TNO, and the former Swiss Expert Centers has generally 
decreased over the past fifteen years.1 

In the United States, research funding for stone conservation 
remains difficult to obtain, with some work on biodeterioration and 
building materials receiving limited National Science Foundation (NSF) 
support and more applied research funding coming in the form of small 
grants from the National Center for Preservation Technology and 
Training (NCPTT) and the Kress Foundation. A July 2009 Mellon 
Foundation–sponsored meeting with the US National Science Foundation 
on heritage and science suggests that there is growing interest in the field 
at the national level in the United States. However, one colleague has 
quipped, “The larger science community ‘rediscovers’ conservation about 
every ten years. But when they find out that the problems are difficult and 
that funding is scarce, they lose interest.” 

In an encouraging development, funding is coming increasingly 
from outside Europe and the United States. Researchers in India and 
China are beginning to publish conservation research at a greater rate, 
partly in response to significant challenges from air pollution, tourism, 
and climate change. Russia, Brazil, and South Korea also have seen grow-
ing interest in research related to conserving heritage in stone as their 
economies have developed. 

Despite the vagaries of funding, the number of research publica-
tions has continued to increase, as researchers in allied disciplines, from 
geography to materials science, have discovered compelling scientific chal-
lenges in the field. 

Stone conservation issues have increasingly been covered in the 
popular press, including public policy as regards conservation research 
(House of Lords, Science and Technology Committee 2006; House of 
Lords, Science and Technology Committee 2007), the biodeterioration of 
monuments (Venkataraman 2008), and the crumbling of cathedrals (Petre 
2006). The sites of Easter Island, Petra, and Angkor are compelling for 
conservation professionals and the public alike, not only for their beauty 
and history but also because they are inexorably eroding as unresolved 
conservation and funding issues continue. Petra (Paradise 2005; Simon, 
Shaer, and Kaiser 2006; Heinrichs 2008) and Angkor (Leisen 2002; 
Leisen, von Plehwe-Leisen, and Warrack 2004; André et al. 2008; Siedel, 
von Plehwe-Leisen, and Leisen 2008) are also important examples of new 
knowledge from conservation research being brought to bear. 

The increasing importance of English as the current common lan-
guage at most conferences and for many journals has helped to consoli-
date the field of conservation.2 Nevertheless, the fact that many important 
works of research are published only in the French, German (see appen-
dix), and Italian literature remains a barrier (Cabreroravel 1993; 
Alessandrini and Pasetti 2004; Snethlage 2005; Pinto Guerra 2008). Some 
recent translations have been useful (Caneva, Nugari, and Salvadori 2008), 
but they are relatively rare. Standards committees (ISO, CEN, ASTM, 
RILEM) have also brought a needed level of integration, especially at the 
European level, for example, Technical Committee 346 (Fassina 2008). 

The Internet has made a huge impact. Enormous amounts of infor-
mation on stone conservation are more readily available and accessible 
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than ever before. Nonetheless, many of the tools needed to access that 
information are still lacking, such as a citation index, more-comprehensive 
databases of conservation-related research material, and wider electronic 
distribution of conference proceedings, past and present. Opportunities, 
such as a Wiki, for more widespread conservation community feedback 
and contributions to conservation research, would also be valuable. 
Without these tools, it is a time-consuming challenge to find high-quality 
research that advances the field.3 Addressing these gaps would accelerate 
the return on our investment in research and would add new tools to the 
stone conservator’s kit. 

So far, so good—there have been many changes for the better. 
Nonetheless, many of the issues that dogged research in 1994 (when the 
first edition of this volume was written) are still with us: the tendency to 
publish research in conference proceedings that are not refereed and not 
widely available, the variable quality of research, the multiplicity of con-
ferences, and the ongoing reinvention of the wheel due to the difficulties 
of accessing previous work in the field. National funding cycles for stone 
conservation still tend toward large-scale interventions on sites “in crisis,” 
while funding for routine maintenance remains in short supply and fund-
ing for long-term research is even more difficult to come by. 

Long-tem funding is of particular importance, given the need to 
evaluate and document treatments over long periods of time—much lon-
ger than the duration of individual research projects. The nonuniversity 
institutions have an important role here, facilitating long-term applied 
research. Discrete or isolated measurements and projects are of limited 
utility. A more nuanced understanding of material behavior and the 
effects of conservation interventions over time is essential for balanced 
and effective decision making, and this can be achieved only in the con-
text of long-term research.

What is the relevance of all this for the stone conservator? It 
sometimes seems that the tool kit of a stone conservator has not changed 
much in the past two decades and may even contain fewer options now 
than then due to regulations, environmental concerns, health concerns, 
compatibility concerns, and lessons learned from unintended conse-
quences. As conservators begin to specialize more in recording, investiga-
tion, and characterization and less in treatments, and stone replacement 
becomes more common, this raises the question: are treatments still 
needed? A colleague answered this question by suggesting, “the field has 
changed, but the stone has not, and in many cases it is crumbling.”

So yes, there is still a role for both preventive and active interven-
tions in the conservator’s tool kit, and important new treatment options 
have been developed over the past fifteen years. Examples include: 
1) more-advanced methods of controlling clay swelling of stone, 2) cou-
pling agents for limestone consolidation, 3) latex solutions and laser sys-
tems for stone cleaning, 4) improved poulticing methods, 5) water-based 
hydrophobic coatings, 6) less-brittle silane consolidants, and 7) nano- 
particle solutions of lime for consolidation of fragile stone surfaces 
(Table 7.1). Inevitably, there is a time lag between development and wide-
spread application, and there is an onus on all researchers—whether sci-
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Table 7.1 

Stone Conservator’s Tool Kit

Table 7.2 

Conservation Scientist’s Took Kit

entists or conservators—to ensure that their findings are implemented 
appropriately. But the tool kit has undoubtedly changed, and further 
changes are on their way, as the tool kit for researchers (Table 7.2) has 
added new tools, including Focused Ion Beam/Environmental Scanning 
Electron Microscopy (FIB/ESEM), cryo-scanning electron microscopy 
(cryo-SEM), and wet-scanning transmission electron microscopy (wet-
STEM), among many others. The context in which these conservation 
tool kits are used now includes the impacts of climate change, the 
Internet, and the rapid development of nanotechnology (Table 7.3). 

Beyond the basic tool kit, there are signs of a new maturity in the 
field of stone conservation. An awareness of the unintended consequences 
of some earlier interventions has, for example, resulted in a more cautious 
and incremental approach in the current generation of stone conservators. 

Interventions with wide application •  Nano-lime particles suspended in alcohol
•  Water-based hydrophobic coatings
•  Spray-on latex for cleaning architectural 

interiors
•  Portable, large-scale laser systems for 

cleaning
• Bioremediation

Interventions that are under 
development

•  Coupling agents for limestone 
consolidation

•  Improved poulticing methods
•  Treatments for clay swelling of stone
•  Nano-particle-modified silane consolidants; 
  calcium alkoxides; calcium phosphate or  
  oxalate treatments
•  Nanotechnology cleaning agents

Preventive conservation •  Microclimate stabilization and shelters
•  Mitigation of rapid environmental fluctua-

tions for immovable cultural property
•  Environmental control for salt-laden struc-

tures based on computer models and 
observations

•  Wind fences, trees, reburial, etc.

Documentation tools •  3D laser scanning to quantify surfaces
•  Quantitative calibration of digital color 

images
•  Solving the lighting problem—repeat 

photography
   – PTM images
   – Color matching

Tools for damage monitoring • Laser interferometry
• Laser scanning
• Real-time crack monitoring
• Time-lapse systems
•  Linear Variable Differential Transformer 

(LVDT)

Research tools • NMR
• FIB/ESEM, cryo-SEM, wet-STEM
• CT-scanning
• Thermal analysis
• Damage models
• Heat and moisture transport models
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In many parts of the world we are now less likely to see the heavy-handed 
use of biocides, waterproofing agents, and consolidants, and more likely to 
see emphasis on careful documentation, monitoring, regular maintenance, 
control of moisture, selective use of waterproofing agents and consolidants, 
stone replacement, and the design of minimally invasive treatments. The 
tradition of regular attention and maintenance is finally being seen as a 
more realistic alternative to the dream of a cure-all, silver-bullet stone pre-
servative. The preservation of our heritage in stone will ultimately benefit 
from our growing understanding of material behavior (Torraca 2009) and 
the maintenance necessary to sustain long-term performance (Brand 1995). 

CONCLUSION

This volume opened with the suggestion that our knowledge of stone  
was outstripping the practical application of that knowledge to stone con - 
servation problems. We have seen that there have, indeed, been major 
advances in our knowledge of stone behavior. This strong scientific foun-
dation has also been accompanied by an encouraging number of new 
conservation treatments, methods, and tools. 

The key challenge for the future is that resources for applied 
research, technology transfer, and long-term testing are needed. While 
progress in these areas has undoubtedly been evident over the last fifteen 
years, structural gaps remain between researchers and practitioners and 
between the old assumptions and rapidly evolving new knowledge. Scarce 
resources for stone research are not always being applied to best use. This 
may be a useful moment to rethink the structural problems inherent in 
traditional approaches to conservation projects and funding. In order to 
preserve our heritage in stone, it is time to build support for larger-scale 
and longer-term research and technology transfer projects. In a number of 
cases, we have exciting solutions to stone conservation problems, but we 
do not have the resources to properly test and implement these solutions. 

Notes
1 EH = English Heritage; NPS = National Park Service, USA; TNO = Netherlands 

Technical Organization.

2 Globish is a term proposed by a French academic for a subset of 1,500 English 
words often used for global communication (see http://en.wikipedia.org/wiki/
Globish). The term “globish” is a blend of “global” and “English.”

3 Some more recent references in this book’s bibliography contain digital object 
identifiers (DOIs), which can be used to link to online resources using the 
following Web site: http://dx.doi.org/.

Table 7.3 

Current Trends in Conservation Research
• Impacts of climate change
• Rare events versus routine damage
•  Use of volunteers in conservation assessments
• Internet (access to research and commentary)
•  Biomimetic surfaces
• Nanotechnology

http://en.wikipedia.org/wiki/Globish
http://en.wikipedia.org/wiki/Globish
http://dx.doi.org/
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581–88. Toruń, Poland: Nicolaus Copernicus University. 

Bourgès, A., and V. Vergès-Belmin. 2008b. Comparison and optimization of five desali-
nation systems on the inner walls of Saint Philibert Church in Dijon, France. 
In Salt Weathering on Buildings and Stone Sculptures, 22–24 October 2008, 
The National Museum Copenhagen, Denmark [Proceedings from the inter-
national conference], ed. J. S. Albertsen, 29–40. Lyngby: Technical University 
of Denmark, Department of Civil Engineering. http://www.design.upenn.edu/
files/14-Bourges__Verges_Belmin_Desalination_SWBSS_2008.pdf.

Bourgès, A., K. T. Fehr, S. Simon, and R. Snethlage. 2008. Correlation between the 
micro-structure and the macroscopic behavior of sandstones. Restoration of 
Buildings and Monuments: An International Journal = Bauinstandsetzen und 
Baudenkmalpflege: Eine internationale Zeitschrift 14 (3): 157–66.

Bourguignon, E., F. Bertrand, C. Moreau, P. Coussot, and N. Shahidzadeh-Bonn. 
2008. Desalination of model stones by poulticing. In Proceedings of the 11th 
International Congress on Deterioration and Conservation of Stone, 15–20 
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73–80. Toruń, Poland: Nicolaus Copernicus University.

Egleston, T. 1886. The cause and prevention of the decay of building stone. 
Transactions of the American Society of Civil Engineers 15: 341.

El-Hakim, S., J. Fryer, M. Picard, and E. Whiting. 2004. Digital recording of Aboriginal 
rock art. In Proceedings of the Tenth International Conference on Virtual 
Systems and Multimedia (VSMM 2004): Hybrid Realities & Digital Partners; 
Explorations in Art, Heritage, Science & the Human Factor, 17–19 November 
2004, Ogaki City, Japan, ed. H. Thwaites, 344–53. Amsterdam and Fairfax, VA: 
IOS Press. 

Elmer, K., E. Rose, B. Fitzner, Wolfgang E. Krumbein, and T. Warscheid. 1993. 
Sterilisation of cultural objects by ethylene oxide: Application for conservation 
practice by laboratory-based or mobile treatments. In Conservation of Stone and 
Other Materials: Proceedings of the International RILEM/UNESCO Congress 
“Conservation of Stone and Other Materials: Research—Industry—Media,” 
UNESCO Headquarters, Paris, June 29–July 1, 1993, ed. M.-J. Thiel, 581–88. 
RILEM Proceedings 21. London and New York: E & FN Spon. 

English Heritage. 2009. Strategic Stone Survey. Available at http://www.english 
-heritage.org.uk/server/show/nav.21370.

English Stone Forum. 2009. English Heritage Strategic Stone Study, Update March 
2009. Available at http://www.englishstone.org.uk/sss%203-2009.html.

Escalante, M. R., J. Valenza, and G. W. Scherer. 2000. Compatible consolidants 
from particle-modified gels. In Proceedings of the 9th International Congress 
on Deterioration and Conservation of Stone, Venice, June 19–24, 2000, ed. 
V. Fassina, vol. 2, 459–65. Amsterdam and New York: Elsevier. 

Espinosa, R. M., L. Franke, and G. Deckelmann. 2008. Model for the mechanical 
stress due to the salt crystallization in porous materials. Construction and 
Building Materials 22 (7): 1350–67.

Espinosa Marzal, R. M., and G. W. Scherer. 2008a. Crystallization of sodium sulfate 
salts in limestone. Environmental Geology 56 (3–4): 605–21.

Espinosa Marzal, R. M., and G. W. Scherer. 2008b. Study of the pore clogging 
induced by salt crystallization in Indiana limestone. In Proceedings of the 11th 
International Congress on Deterioration and Conservation of Stone, 15–20 
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Copernicus University.

Kapsalas, P., P. Maravelaki-Kalaitzaki, M. Zervakis, E. T. Delegou, and A. 
Moropoulou. 2007. Optical inspection for quantification of decay on stone sur-
faces. NDT & E International 40 (1): 2–11.

Karatasios, I., V. Kilikoglou, B. Colston, P. Theoulakis, and D. Watt. 2007. Setting 
process of lime-based conservation mortars with barium hydroxide. Cement and 
Concrete Research 37 (6): 886–93.

Karatasios, I., P. Theoulakis, A. Kalagri, A. Sapalidis, and V. Kilikoglou. 2009. 
Evaluation of consolidation treatments of marly limestones used in archaeologi-
cal monuments. Construction and Building Materials 23 (8): 2803–12.

Keene, L., and Fu-Pen Chiang. 2009. Real-time anti-node visualization of vibrating 
distributed systems in noisy environments using defocused laser speckle contrast 
analysis. Journal of Sound and Vibration 320 (3): 472–81.

Keyser, J. D., M. Greer, and J. Greer. 2005. Arminto petroglyphs: Rock art dam-
age assessment and management considerations in Central Wyoming. Plains 
Anthropologist 50 (193): 23–30.

Khummalai, N., and V. Boonamnuayvitaya. 2005. Suppression of arsenopyrite sur-
face oxidation by sol-gel coatings. Journal of Bioscience and Bioengineering 
99 (3): 277–84.

Kim, Eun Kyung, Jongok Won, Jeong-Jin Kim, Yong Soo Kang, and Sa Dug Kim. 2008. 
TEOS/GPTMS/silica nanoparticle solutions for conservation of Korean heritage 
stones. In Proceedings of the 11th International Congress on Deterioration 
and Conservation of Stone, 15–20 September 2008, Toruń, Poland, ed. J. W. 
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449–56. Toruń, Poland: Nicolaus Copernicus University.

Papida, S., W. Murphy, and E. May. 2000. Enhancement of physical weathering of 
building stones by microbial populations. International Biodeterioration and 
Biodegradation 46 (4): 305–17.

http://www.telegraph.co.uk/culture/art/3577408/The-cleaning-power-of-Pisa.html
http://www.telegraph.co.uk/culture/art/3577408/The-cleaning-power-of-Pisa.html


 References 119

PROOF    1  2  3  4  5  6

Paradise, T. R. 2002. Sandsteinverwitterung und ausprägung in Petra, Jordanien 
[Sandstone weathering and aspect in Petra, Jordan]. Zeitschrift für 
Geomorphologie 46 (1): 1–17.

Paradise, T. R. 2005. Petra revisited: An examination of sandstone weathering research 
in Petra, Jordan. In Stone Decay in the Architectural Environment, ed. A. V. 
Turkington, 39–49. GSA Special Paper 390. Boulder, CO: Geological Society of 
America. 

Paterakis, A. B. 1999. Those evasive salt crystals. In 12th Triennial Meeting, ICOM 
Committee for Conservation, Lyon, 29 August–3 September 1999: Preprints, ed. 
J. Bridgland, 799–802. London: James & James (Science Publishers) Ltd. 

Pearson, C., and J. Clarke. 1978. Conservation and restoration of painting and engrav-
ing sites in Western Australia. In Conservation of Rock Art: Proceedings of the 
International Workshop on the Conservation of Rock Art, Perth, September 
1977, ed. C. Pearson, 89–94. Sydney: Institute for the Conservation of Cultural 
Material. 

Pel, L., H. Huinink, and K. Kopinga. 2002. Ion transport and crystallization in inor-
ganic building materials as studied by nuclear magnetic resonance. Applied 
Physics Letters 81 (15): 2893.

Pel, L., K. Kopinga, and H. Brocken. 1996. Moisture transport in porous building 
materials. Heron 41 (2): 95–105.

Pel, L., A. Sawdy, and V. Voroninaa. 2010. Physical principles and efficiency of salt 
extraction by poulticing. Journal of Cultural Heritage 11 (1): 59–67.

Pepi, R. M. 2008. Book review: Stone Conservation Principles and Practice. Traditional 
Building (December). http://www.traditional-building.com/Previous-Issues-08/
DecemberBR08Stone.html.

Pérez Bernal, J. L., and M. A. Bello López. 2000. Fractal dimension of stone pore sur-
face as weathering descriptor. Applied Surface Science 161 (1): 47–53.

Perry, T. D., IV, O. W. Duckworth, C. J. McNamara, S. T. Martin, and R. Mitchell. 
2004. Effects of the biologically produced polymer alginic acid on macroscopic 
and microscopic calcite dissolution rates. Environmental Science and Technology 
38 (11): 3040–46.

Perry, T. D., IV, C. J. McNamara, and R. Mitchell. 2005. Biodeterioration of  
stone. In Scientific Examination of Art: Modern Techniques in Conservation 
and Analysis; Sackler National Academy of Sciences Colloquium, 72–86. 
Washington, DC: National Academies Press. http://books.nap.edu/openbook 
.php?record_id=11413&page=72.

Petre, J. 2006. Crumbling cathedral held together by tape. The Daily Telegraph (UK), 
October 4. http://www.telegraph.co.uk/news/uknews/1530481/Crumbling 
-cathedral-held-together-by-tape.html.

Petushkova, Y. P., and A. F. Grishkova. 1990. Bacterial degradation of limestone 
treated with polymers. In 9th Triennial Meeting, ICOM Committee for 
Conservation, Dresden, German Democratic Republic, 26–31 August, 1990: 
Preprints, ed. K. Grimstad, 347–49. Los Angeles: ICOM Committee for 
Conservation; Marina del Rey, CA: Getty Conservation Institute. 

Piacenti, F., M. Camaiti, T. Brocchi, and A. Scala. 1993a. New developments in per-
fluorinated protective agents for stone. In Conservation of Stone and Other 
Materials: Proceedings of the International RILEM/UNESCO Congress 
“Conservation of Stone and Other Materials: Research—Industry—Media,” held 
at UNESCO Headquarters, Paris, June 29–July 1, 1993, ed. M.-J. Thiel, 733–39. 
RILEM Proceedings 21. London and New York: E & FN Spon. 

Piacenti, F., M. Camaiti, C. Manganelli del Fà, and A. Scala. 1993. Fluorinated aggre-
gating materials for stone. In Conservation of Stone and Other Materials: 
Proceedings of the International RILEM/UNESCO Congress “Conservation of 
Stone and Other Materials: Research—Industry—Media,” held at UNESCO 
Headquarters, Paris, June 29–July 1, 1993, ed. M.-J. Thiel, 740–47. RILEM 
Proceedings 21. London and New York: E & FN Spon. 

Pien, A. 1991. Surface water repellents: Unification of tests methods. In Science, 
Technology, and European Cultural Heritage: Proceedings of the European 
Symposium, Bologna, Italy, 13–16 June 1989, ed. N. S. Baer, C. Sabbioni, and 
A. I. Sors, 646–48. Oxford and Boston: Published for the Commission of the 
European Communities by Butterworth-Heinemann Publishers. 

http://www.traditional-building.com/Previous-Issues-08/DecemberBR08Stone.html
http://www.traditional-building.com/Previous-Issues-08/DecemberBR08Stone.html
http://books.nap.edu/openbook.php?record_id=11413&page=72
http://www.telegraph.co.uk/news/uknews/1530481/Crumbling-cathedral-held-together-by-tape.html
http://www.telegraph.co.uk/news/uknews/1530481/Crumbling-cathedral-held-together-by-tape.html
http://books.nap.edu/openbook.php?record_id=11413&page=72


120 References

PROOF    1  2  3  4  5  6

Piervittori, R., O. Salvadori, and D. Isocrono. 2004. Literature on lichens and biodete-
rioration of stonework, IV. Lichenologist 36 (2): 145–57.

Pini, R., S. Siano, and R. Salimbeni. 2000. In field tests and operative applications 
of improved laser techniques for stone cleaning. In Proceedings of the 9th 
International Congress on Deterioration and Conservation of Stone, Venice, June 
19–24, 2000, ed. V. Fassina, vol. 2, 577–82. Amsterdam and New York: Elsevier. 

Pinto, A. P. F., and J. Delgado Rodrigues. 2008a. Hydroxlyating conversion treat-
ment and alkoxysilane coupling agent as pre-treatment for the consolidation 
of limestones with ethly silicate. In Stone Consolidation in Cultural Heritage: 
Research and Practice; Proceedings of the International Symposium, Lisbon, 6–7 
May 2008, ed. J. Delgado Rodrigues and J. M. Mimoso, 131–40. Lisbon: LNEC 
(Laboratório Nacional de Engenharia Civil). 

Pinto, A. P. F., and J. Delgado Rodrigues. 2008b. Stone consolidation: The role of 
treatment procedures. Journal of Cultural Heritage 9 (1): 38–53.

Pinto Guerra, E. 2008. Risanamento di murature umide e degradate: Manuale, guida 
progettuale, soluzioni. Palermo: D. Flaccovio. 

Poupeleer, A. S., J. Carmeliet, S. Roels, and D. Van Gemert. 2006. Combining 
 expansion/shrinkage monitoring and X-ray measurement for water and salt 
transport in calcium silicate beam. In Research in Building Physics and Building 
Engineering: Proceedings of the 3rd International Building Physics Conference, 
Concordia University, Montreal, Canada, 27–31 August 2006, ed. P. Fazio, 
Hua Ge, Jiwu Rao, and G. Desmarais, 147–54. London and New York:  
Taylor & Francis. 

Price, C. A. 1982. The evaluation of stone preservatives. In Conservation of Historic 
Stone Buildings and Monuments: Report of the Committee on Conservation of 
Historic Stone Buildings and Monuments, National Materials Advisory Board, 
Commission on Engineering and Technical Systems, National Research Council, 
329–40. Washington, DC: National Academy Press. 

Price, C., ed. 2000. An Expert Chemical Model for Determining the Environmental 
Conditions Needed to Prevent Salt Damage in Porous Materials: Protection and 
Conservation of the European Cultural Heritage. Research Report (European 
Commission, Directorate-General XII, Science, Research, and Development) 11. 
London: Archetype Publications. 

Price, C. 2006. Consolidation. In Stone Conservation: Principles and Practice, ed. 
A. Henry, 101–26. Shaftesbury, UK: Donhead Publishing. 

Price, C. 2007. Predicting environmental conditions to minimise salt damage at the 
Tower of London: A comparison of two approaches. Environmental Geology 
52 (2): 369–74.

Price, C., and P. Brimblecombe. 1994. Preventing salt damage in porous materials. 
In Preventive Conservation Practice, Theory and Research: Preprints of the 
Contributions to the Ottawa Congress, 12–16 September 1994, ed. A. Roy and 
P. Smith, 90–93. London: International Institute for Conservation of Historic 
and Artistic Works. 

Price, C., K. Ross, and G. White. 1988. A further appraisal of the “lime technique” for 
limestone consolidation, using a radioactive tracer. Studies in Conservation 33 
(4): 178–86.
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Nicolaus Copernicus University.

Rosenfeld, A. 1988. Rock Art Conservation in Australia. 2nd ed. Special Australian 
Heritage Publication Series 2. Canberra: Australian Govt. Pub. Service. 

Rosling, H. 2009. Gapminder. Available at http://www.gapminder.org.

Rosvall, J., and B. Lagerqvist. 1993. A standardized monitoring system in cultural con-
servation: A tentative model. In Conservation of Architectural Surfaces: Stones 
and Wall Covering, ed. G. Biscontin and L. Graziano, 69–76. 
Venice: Il Cardo. 

Rousset, B., G. Stéfania, J. James, and B. Pozzi. 2005. Injection grouts for molasse 
sandstones: Preliminary assessments. In International RILEM Workshop “Repair 
Mortars for Historic Masonry,” Delft University of Technology, The Netherlands, 
26–28 January 2005: Proceedings. http://www.conservation-science.ch/files/
rousset_gentile_james_pozzi_2005_delft_injectiongroutsformolassesandstones 
preliminaryassessments.pdf.

Rowe, S., and C. Rozeik. 2008. The uses of cyclododecane in conservation. Reviews in 
Conservation 9: 17–31.

Rozenbaum, O., L. Barbanson, F. Muller, and A. Bruand. 2008. Significance of a com-
bined approach for replacement stones in the heritage buildings’ conservation 
frame. Comptes Rendus—Geoscience 340 (6): 345–55.

Ruedrich, J., T. Weiss, and S. Siegesmund. 2002. Thermal behaviour of weathered and 
consolidated marbles. In Natural Stone, Weathering Phenomena, Conservation 
Strategies and Case Studies, ed. S. Siegesmund, T. Weiss, and A. Vollbrecht, 
255–71. Geological Society Special Publications 205. London: Geological Society 
of London. 

Ruiz-Agudo, E., J. D. Martín-Ramos, and C. Rodríguez-Navarro. 2007. Mechanism 
and kinetics of dehydration of epsomite crystals formed in the presence of 
organic additives. Journal of Physical Chemistry B 111 (1): 41–52.

Ruiz-Agudo, E., C. V. Putnis, and C. Rodríguez-Navarro. 2008. Interaction between 
epsomite crystals and organic additives. Crystal Growth and Design 8 (8): 
2665–73.

Ruiz de Argandoña, V. G., L. Calleja, Á. Rodríguez-Rey, L. M. Suárez del Río, and 
C. Celorio. 2009. X-ray computed tomography study of the influence of con-
solidants on the hydric properties of sandstones for stone conservation studies. 
Engineering Geology 103 (3–4): 69–75.

Saarela, M., H.-L. Alakomi, M.-L. Suihko, L. Maunuksela, L. Raaska, and T. Mattila-
Sandholm. 2004. Heterotrophic microorganisms in air and biofilm samples 
from Roman catacombs, with special emphasis on actinobacteria and fungi. 
International Biodeterioration and Biodegradation 54 (1): 27–37.

Sabbioni, C., M. Cassar, P. Brimblecombe, J. Tilblad, R. Kozloweski, M. Drdacky, 
C. Saiz-Jimenez, T. Grontoft, I. Wainwrigh, and X. Arino. 2006. Global climate 
change impact on built heritage and cultural landscapes. In Heritage, Weathering 
and Conservation: Proceedings of the International Conference on Heritage, 
Weathering and Conservation (HWC-2006), 21–24 June 2006, Madrid, ed. 
R. Fort, M. Alvarez de Buergo, M. Gomez-Heras, and C. Vazquez-Calvo,  
395–401. Balkema Proceedings and Monographs in Engineering, Water and 
Earth Sciences. London and New York: Taylor & Francis. 

Sadat-Shojai, M., and A. Ershad-Langroudi. 2009. Polymeric coatings for protection of 
historic monuments: Opportunities and challenges. Journal of Applied Polymer 
Science 112 (4): 2535–51.

http://www.gapminder.org
http://www.conservation-science.ch/files/rousset_gentile_james_pozzi_2005_delft_injectiongroutsformolassesandstonespreliminaryassessments.pdf
http://www.conservation-science.ch/files/rousset_gentile_james_pozzi_2005_delft_injectiongroutsformolassesandstonespreliminaryassessments.pdf
http://www.conservation-science.ch/files/rousset_gentile_james_pozzi_2005_delft_injectiongroutsformolassesandstonespreliminaryassessments.pdf


124 References

PROOF    1  2  3  4  5  6

Sagai, M., A. Furuyama, and T. Ichinose. 1996. Biological effects of diesel exhaust 
particles (DEP), III: Pathogenesis of asthma like symptoms in mice. Free Radical 
Biology and Medicine 21 (2): 199–209.

Saidov, T., and L. Pel. 2008. The formation of meta stable sodium sulfate heptahydrate 
during drying as measured by NMR. In Proceedings of the 11th International 
Congress on Deterioration and Conservation of Stone, 15–20 September 2008, 
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September 2008, Toruń, Poland, ed. J. W. Lukaszewicz and P. Niemcewicz, 
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Nicolaus Copernicus University.

Zehnder, K., and O. Schoch. 2009. Efflorescence of mirabilite, epsomite and gyp-
sum traced by automated monitoring on-site. Journal of Cultural Heritage 
10 (3): 319–30.

http://www.heritage.nsw.gov.au/docs/HVC014_Salt_Damp_tech_guide_FA_web.pdf
http://www.heritage.nsw.gov.au/docs/HVC014_Salt_Damp_tech_guide_FA_web.pdf
http://dx.doi.org/10.1007/s10064-006-0082-x
http://dx.doi.org/10.1007/s10064-006-0082-x
aduer
Typewritten Text
  DOI: 10.1007/s10064-008-0133-6  

http://dx.doi.org/10.1007/s10064-008-0133-6
aduer
Sticky Note
Marked set by aduer



 References 139

PROOF    1  2  3  4  5  6

Zezza, F. 1990. Computerized analysis of stone decay in monuments. In Advanced 
Workshop: “Analytical Methodologies for the Investigation of Damaged Stones,” 
Pavia, 14–21 September 1990, ed. F. Veniale and U. Zezza, 163–84. Pavia, Italy: 
Dipartimento di scienze della terra, Sezione di mineralogia, petrografia, geochim-
ica, Università degli studi di Pavia. 

Zezza, F. 1994. Stone decay diagnosis and control of treatments by computerized 
analytical techniques. In Conservation of Monuments in the Mediterranean 
Basin: Stone Monuments, Methodologies for the Analysis of Weathering and 
Conservation; Proceedings of the 3rd International Symposium, Venice, 22–25 
June 1994 = La conservazione dei monumenti nel bacino del Mediterraneo: 
Materiali lapidei e monumenti, metodologie per l’analisi del degrado e la con-
servazione; Atti del 3° simposio internazionale, Venezia, 22–25 giugno 1994, ed. 
V. Fassina, H. Ott, and F. Zezza, 77–81 and plates. Venice: Soprintendenza ai 
beni artistici e storici di Venezia.

Zezza, F. 2002. Non-destructive technique for the assessment of the deterioration 
processes of prehistoric rock art in karstic caves: The paleolithic paintings of 
Altamira (Spain). In Protection and Conservation of the Cultural Heritage 
of the Mediterranean Cities, ed. E. Galán Huertos and F. Zezza, 377–88. Lisse, 
Netherlands, and Exton, PA: Balkema. 

Zhao Haiying, Li Zuixiong, Han Wenfeng, Sun Manli, and Wang Xudong. 2007. Study 
on the main disease of the Great Wall and its conservation in Gansu province. 
Wen wu bao hu yu kao gu ke xue = Sciences of Conservation & Archaeology 19 
(1): 28–32.

Ziegenbalg, G. 2008. Colloidal calcium hydroxide: A new material for consolidation 
and conservation of carbonatic stones. In Proceedings of the 11th International 
Congress on Deterioration and Conservation of Stone, 15–20 September 2008, 
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 internationale Zeitschrift 11 (6): 433–42.
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Introduction to Stone Cleaning and Desalination
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of Cleaned Stone Buildings. Historic Scotland Technical Advice Notes 25. 
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Introduction to Stone Monitoring, Moisture, and Environment
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Doehne, E., and S. Pinchin. 2008. Time-lapse macro-imaging in the field: Monitoring 
rapid flaking of magnesian limestone. In Proceedings of the 11th International 
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Tiano, P., and C. Pardini, eds. 2008. In Situ Monitoring of Monumental Surfaces: 
Proceedings of the International Workshop SMW08, 27–29 October 2008, 
Florence, Italy. Florence: Edifir. 

Introduction to Rock Art Conservation
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Introduction to the Conservation of Ornamental Stones
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References from the French Literature in Stone Conservation

Bromblet, P., and G. Martinet. 2002. Joints, mortiers de pose et produits de  ragréage: 
Les différentes pathologies; Réflexions et préconisations. Pierre actual: 
Matériaux, ouvrages, techniques (785): 66–79. 

Bromblet, P., J.-D. Mertz, V. Vergès-Belmin, and L. Leroux. 2002. Consolidation et 
hydrofugation de la pierre. Monumental: Revue scientifique et technique de la 
Sous-direction des monuments historiques (2002): 200–243.

Bromblet, P, and T. Vieweger. 2005. Le laser de nettoyage de la pierre et la  restauration 
des sculptures. Pierre actual: Matériaux, ouvrages, techniques (829): 86–95. 
http://www.lrmh.fr/lrmh/telechargement/laserpb.pdf.

Orial, G. 2005. Les altérations biologiques et les biens patrimoniaux: Introduction. 
Monumental: Revue scientifique et technique de la Sous-direction des 
 monuments historiques 2005 (1): 95.

Orial, G. 2005. Les altérations biologiques et les biens patrimoniaux: Les bactéries, 
algues et lichens: Morphologie et altérations. Monumental: Revue scientifique et 
technique de la Sous-direction des monuments historiques 2005 (1): 96–99, 117.

Orial, G., and F. Bousta. 2005. Les altérations biologiques et les biens  patrimoni- 
aux: Les traitements; Définitions, sélection des produits et mise en oevre. 
Monumental: Revue scientifique et technique de la Sous-direction des monu-
ments historiques 2005 (1): 107–12.

Vergès-Belmin, V., and P. Bromblet. 2000. Le nettoyage de la pierre. Monumental: 
Revue scientifique et technique de la Sous-direction des monuments historiques 
(2000): 220–73.

Vergès-Belmin, V, and P. Bromblet. 2001. La pierre et les sels. Monumental: Revue 
scientifique et technique de la Sous-direction des monuments historiques 
(2001): 224–62.

References from the German Literature in Stone Conservation

Siegesmund, S., M. Auras, J. Ruedrich, and R. Snethlage, eds. 2005. Geowissenschaften 
und Denkmalpflege: Bauwerkskartierung, Natursteinverwitterung, 
Konservierungsstrategien. Zeitschrift der Deutschen Geologischen Gesellschaft 
156 (1): 1–238. http://www.schweizerbart.de/papers/zdgg/list/156#paper55362.

Siegesmund, S., and A. Ehling, eds. 2007. Rohstoff Naturstein = Natural Building 
Stone Resources. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften 
158 (3): 349–665.

Siegesmund, S., and A. Ehling, eds. 2008. Rohstoff Naturstein: Teil 2 = Natural 
Building Stone Resources: Part 2. Zeitschrift der Deutschen Gesellschaft für 
Geowissenschaften 158 (4): 667–1087.

Siegesmund, S., and R. Snethlage, eds. 2008. Denkmalgesteine Festschrift Wolf-Dieter 
Grimm. Schriftenreihe der Deutschen Gesellschaft für Geowissenschaften 59: 
1–326. 

Snethlage, R., ed. 1995. Natursteinkonservierung I. Denkmalpflege und 
Naturwissenschaft. Berlin: Ernst & Sohn. 

Snethlage, R., ed. 1998. Natursteinkonservierung II. Denkmalpflege und 
Naturwissenschaft. Stuttgart: Fraunhofer. 

Useful Sources of Information for Stone Conservation Research

Free Online Research Databases (arranged in order of usefulness)

Google Scholar (useful for articles): 
http://scholar.google.com/

Google Books (some books have searchable full text): 
http://books.google.com/

WorldCat (search local libraries and post reviews): 
http://www.worldcat.org/

Getty Conservation Institute Art and Archaeology Technical Abstracts (AATA): 
http://aata.getty.edu/nps/

http://www.lrmh.fr/lrmh/telechargement/laserpb.pdf
http://www.schweizerbart.de/papers/zdgg/list/156#paper55362
http://scholar.google.com/
http://books.google.com/
http://www.worldcat.org/
http://aata.getty.edu/nps
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Canadian Conservation Information Network BCIN: 
http://www.bcin.ca/

ICCROM Library: 
http://library.iccrom.org/

The Laboratoire de Recherche des Monuments Historiques (LRMH) has a photo-
graphic and bibliographic database called CASTOR:  
http://www.lrmh.fr/cgi-bin/qtp?typge=CZIE&lang=uk

The CRNS database CAT.INIST is useful, especially for finding missing abstracts for 
older articles:  
http://cat.inist.fr/?aModele=presentation

The Scirus database by Elsevier is similar to Google Scholar: 
http://www.scirus.com/

Commercial Research Databases (by institutional subscription, in most 
cases; arranged in order of usefulness)

Scopus by Elsevier:  
http://info.scopus.com/

Science Direct by Elsevier: 
http://www.sciencedirect.com/

ISI Web of Knowledge: 
http://isiwebofknowledge.com/

Springer: 
http://www.springerlink.com/

Geological Society of London Database: 
http://www.lyellcollection.org/

Geological Society of America Publications: 
http://www.gsapubs.org/

American Chemical Society: 
www.acs.org/

JSTOR Non-Profit Archive:  
http://www.jstor.org/

PowerPoint Slides Archive and Network

http://www.slideshare.net/

http://www.slideshare.net/icomos.uk

Online Network of Repositories

http://en.scientificcommons.org/

http://repository.upenn.edu/

Online Building Conservation Education Site
(Practitioner support for building conservation accreditation)

http://www.understandingconservation.org/

Lists of Conservation Related Sites

Getty Conservation Institute List of Sites: 
http://www.getty.edu/conservation/research_resources/othersites.html

ICCROM Database of Conservation Related Links: 
http://www.iccrom.org/db_links.asp

Conservation Online (Cool) (site formerly hosted at Stanford University, now on a 
new server at AIC): 
http://cool.conservation-us.org/

American Institute for Conservation of Historic and Artistic Works (AIC): 
http://www.conservation-us.org/

http://www.bcin.ca/
http://library.iccrom.org/
http://www.lrmh.fr/cgi-bin/qtp?typge=CZIE&lang=uk
http://cat.inist.fr/?aModele=presentation
http://www.scirus.com/
http://info.scopus.com/
http://www.sciencedirect.com/
http://isiwebofknowledge.com/
http://www.springerlink.com/
http://www.lyellcollection.org/
http://www.gsapubs.org/
http://www.acs.org/
http://www.jstor.org/
http://www.slideshare.net/
http://www.slideshare.net/icomos.uk
http://en.scientificcommons.org/
http://repository.upenn.edu/
http://www.understandingconservation.org/
http://www.getty.edu/conservation/research_resources/othersites.html
http://www.iccrom.org/db_links.asp
http://cool.conservation-us.org/
http://www.conservation-us.org/
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Robert Gordon University, Aberdeen, UK (links to heritage conservation and related 
sites [last updated in 2005, but still quite useful]): 
http://www2.rgu.ac.uk/schools/mcrg/sites.htm

UK National Conservation Centre: 
http://www.liverpoolmuseums.org.uk/conservation/

Forum Restauro @ Conservazione: 
http://www.forum-restauro.org/

A variety of documents are available digitally and can be found via their DOI (digital 
object identifier). Similar to URLs, DOIs do not change as Web sites change. When 
the DOI for a document is known, the document can be located by accessing a DOI 
resolver, such as http://dx.doi.org, and entering the DOI.

http://www2.rgu.ac.uk/schools/mcrg/sites.htm
http://www.liverpoolmuseums.org.uk/conservation/
http://www.forum-restauro.org/
http://dx.doi.org
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note: page numbers followed by t  
refer to tables.

Aachen concept, 45
accelerated weathering studies, 52–53
acid rain, 10, 12–13
 protection, testing effectiveness of, 50
 rock art and, 61
acrylics, as consolidant, 42
Acryloid B72, 42
AFM (atomic force microscopy), 6, 17–18
air pollution
 biofilms and, 23
 as source of salts, 15
 study of, new approaches to, 75
air pollution, as cause of decay, 10–15
 as ancient problem, 11
 atmospheric sulfur dioxide, 5, 10, 

12, 13
 benefits of reduction, research on, 

12–13
 extent of problem, 11
 factors affecting, 11
 history of research on, 10, 26n2
 indirect effects of, 14–15
 memory effect in, 14
 research needed in, 13–14
 wet vs. dry deposition, 13
algae, 22, 23
 biocides and, 48, 62
alkoxysilanes
 as consolidant, 39–41
  with B72, 42
 need for research on, 53
 recent developments in, 78
 as surface coating, 45, 46
 as water repellent, 44–45
alkylalkoxysiloxane, 45
Altamira cave, 23, 58, 60, 62
altitude, and differential stress, 25
alveolization, 18–19, 26n7
American Society for Testing and 

Materials (ASTM), 51
aminoalkyl silane, 43
ammonium bicarbonate, 34
ammonium biocides, water repellents 

and, 56
ammonium carbonate, 34
ammonium oxalate, 46

animal activity, and rock art damage, 
60, 63

antibacterial treatments, 62. See also 
biocides

antifungal treatments, 62. See also 
biocides

anti-graffiti coatings
 for rock art, 61
 in stone conservation, 45–46
appearance, cleaning and, 29, 31, 32
archaea, halophilic, 24
Arte Mundit. See latex poultice method
ASMOSIA (Association for the Study of 

Marble and Other Stones in 
Antiquity), 64

assessment. See effectiveness of 
treatments, assessment of

Assessment of Desalination Mortars and 
Poultices for Historic Masonry. See 
DESALINATION

Association for the Study of Marble and 
Other Stones in Antiquity 
(ASMOSIA), 64

ASTM (American Society for Testing and 
Materials), 51

atomic force microscopy (AFM), 6, 17–18
autotrophic bacteria, 23

bacteria
 autotrophic, 23
 biocides for, 48
 in biological cleaning, 33
 cyanobacteria, 23
 in desalination, 35
 halophilic, 19, 24
 heterotrophic, 23
 lime treatment and, 37
 nitrifying, 12
 role of, 20, 21, 22–23
Balfour Beatty Limited, 36
Balvac, 36
barium carbonate coating, 38
biaxial flexural strength measurements, 8
BIOBRUSH (BlOremediation for Building 

Restoration of the Urban Stone 
Heritage; EC project), 35, 47

biocides, 21, 47–48
 current caution regarding, 80
 endolithic microbes and, 22

 in rock art conservation, 60, 62
biodeterioration, 20–24. See also algae; 

bacteria; lichens; microbes; 
vegetation

 balancing of appearance and 
longevity, 21

 factors in, 23
 preventive measures, 23
 recent research advances, 23–24
 research reviews on, 21
 terminology of, 21
biofilms
 air pollution and, 23
 effect of, 21
 limestone and, 23
biological cleaning, 33
biological stain removal, 47
biomimetic surfaces, 43, 80t
bioremediation, 21
biotite, salt contamination and, 19
black crusts
 removal of, 29, 33, 34
 research on, 11–12, 33
black fungi, 12
BIOremediation for Building Restoration 

of the Urban Stone Heritage 
(BIOBRUSH), 35

Bologna cocktail, 42
bowing, of thin marble slabs, 26
Brazil, conservation research in, 75, 77
breakdown of treatments, need for 

research on, 53
BRGM (Bureau de Recherche Géologique 

et Minière), 64–65
British Geological Survey, 64
British Museum renovation, replacement 

stones for, 64
B72, 42, 52
Bureau de Recherche Géologique et 

Minière (BRGM), 64–65
Burra Charter, 54

calcite, transformation into calcium 
phosphate, 43

calcite dissolution
 biofilms and, 21
 salt contamination and, 19
calcium alkoxides, 43
calcium carbonate, 36

Index
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calcium hydroxide (slaked lime), as 
consolidant, 36–37

calcium oxalate, 22, 46
calcium phosphate, transformation of 

gypsum or calcite into, 43
calcium sulfate
 converting back to calcium 

carbonate, 33
 removal of, 34
carbonate materials, cleaning of, 29
carbon dioxide, as cause of decay, 10
carbonic acid, 13, 14
 lichens and, 22
caves, environmental control in, 23–24
cement mortar, in rock art 

conservation, 62
CEN (Comité Européen de 

Normalisation) Technical 
Committee 346, 49, 51

characterization of stone. See also 
documentation of current form of 
stone

 after treatment, 50–51
 before treatment, 1–2
chelating agents, heterotrophic bacteria 

and, 23
chemical composition of stone, relevance 

to preservation, 2
chemical dissolution, measurement of, 6
China, conservation research in, 75, 77
citation indices
 need for development of, 78
 usefulness of, 70–71
citation ranking, 71. See also H-index
clay minerals, salt decay in, 19
clay-rich stone, alkoxysilanes and, 40
clay swelling
 and differential stress, 24
 prevention of, 28
 recent advances in, 78
 research on, 25
cleaning, 29–33
 assessing effectiveness of, 30–31
 biological cleaning, 33
 and damage, 30
 efficiency of, water repellents and, 52
 issues in, 29–30
 laser cleaning, 31–32
 latex poultice method, 32
 recent developments in, 78
 of rock art, 61, 62
 target cleaning level, importance of 

defining, 30, 31
 targeting of specific types of dirt, 33
 techniques, 30
climate change
 impact on stone decay rates, 14–15
 increased interest in, 75, 80t
close-range photogrammetry, 5
coal, burning of, and air pollution, 11
colloidal silica, as surface coating, 47
Comité Européen de Normalisation 

(CEN) Technical Committee 
346, 49

COMPASS project (EC), 8

computerized X-ray tomography (CT), 8
conferences
 on-line distribution of proceedings, 

need for, 78
 poor quality of papers at, 67, 72, 78
 reviews, value of, 71
 Torun Guidelines for Conferences in 

the Field of Stone Conservation, 
67, 68

conferences, suggestions for improving
 attendance, funding of, 71
 conference papers, selection of, 71–72
confocal microscopy, 5
conservation, active. See also effectiveness 

of treatments, assessment of
 breakdown of treatments, need for 

research on, 53
 cleaning, 29–33
 consolidation, 35–43
 current caution regarding, 78, 79–80
 desalination, 33–35
 finite life of, and conservation policy, 

54, 55
 interaction of, research needed on, 

55–56
 past treatments, importance of records 

of, 56
 questions to ask prior to, 50
 reversibility of, as realistically 

impractical, 55
 surface coatings, 43–48
conservation
 key challenges for the future, 80
 recent trends in, 79–80, 80t
Conservation of Ancient Stone Quarry 

Landscapes in the Eastern 
Mediterranean (QuarryScapes) 
project (EC), 63

conservation policy, 54–57
 finite life of treatments and, 54, 55
 international uniformity, efforts to 

develop, 54
 parties playing role in, 54
 recording of stone as it exists, 56–57
 on retreatment, 55–56
 on surface coatings and consolidants, 

55
 variety of approaches to, 54
conservation science
 attraction of high-quality students to 

field, 73
 tool kit for, 79, 79t
 training programs in, 73
conservators, lack of scientific 

training, 73
consolidants, 35–43
 acrylics, 42
 alkoxysilanes, 39–41
 application of, 36
 aqueous emulsions, research on, 43
 barium hydroxide, 38
 blocking of pores by, 55
 bonding with substrate, 39
 current caution regarding, 80
 and differential stress, 25

 distribution of within stone, 39
 emulsions, 43
 endolithic microbes and, 22
 epoxies, 41–42
 evaluative studies of, 52
 interaction of, research needed on, 

55–56
 lime technique, and related treatments, 

36–37
 organic polymers, 38–39
 other materials, 43
 recent developments in, 78
 required characteristics of, 35–36
 research needed on, 39
 responsible use of, 55
 reversibility of, as realistically 

impractical, 55
 for rock art treatment, 61
 selection of, as empirical, 38–39
contact profilometry, 5
cryo-scanning electron microscopy (cryo-

SEM), 79, 79t
crystal growth inhibitors, 18, 46
crystallization damage. See salt damage
CT (computerized X-ray tomography), 8
cyanobacteria, 12, 23
cycloaliphatic epoxy resins, 41–42
cyclododecane, as consolidant, 43

Dahlem Conference, 9, 26n1, 74n5
damage functions, 12
damp-proof courses (DPCs), 34–35, 45
databases
 EUROCARE, 53
 of field trials, 53
 on Internet, and improvements in 

research, 66
 MONUFAKT, 53
 of replacement stone, efforts to 

establish, 64–65
 of research materials, online, need for 

development of, 78
 of stone as it exists, 56–57
decay, causes of, 9–26
 air pollution, 10–15
 biodeterioration, 20–24
 differential stress, 24–25
 intrinsic problems, 25–26
 research reviews on, 9
 salts, 15–20
 system dynamics approach to, 9, 26n1
decay, definition of, 3
decay, describing
 terminology, 2–3
 types, 2
decay, measuring, 3–9
 in evaluation of treatment 

effectiveness, 50
 inadequacy of current procedures, 4
 purposes of, 3–4
 quantities to measure, 3
 research needed in, 9
 subsurface methods, in situ, 6–7
 subsurface methods, laboratory-based, 

7–9
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 surface techniques, 5–6
decay rates, nonlinear, new awareness 

of, 75
degradation, definition of, 3
DEMs (digital elevation models), 56
desalination, 33–35
 alkoxysilane consolidation and, 41
 large-scale masonry projects, 34
 source reduction, 34–35
DESALINATION (Assessment of 

Desalination Mortars and Poultices 
for Historic Masonry; EC project), 
8, 34

DFMS (drilling force measurement 
system), 7

differential scanning calorimetry, 18
differential stress, 24–25
 research on, 25
digital elevation models (DEMs), 56
digital holography, 5
digital object identifiers (DOIs), 80
documentation of current form of stone. 

See also characterization of stone
 current emphasis on, 80
 current tools for, 79t
 in rock art conservation, 60, 63
 in stone conservation, 56–57
DOIs (digital object identifiers), 80
dose response, as concept in air pollution 

studies, 75
DPCs (damp-proof courses), 34–35, 45
drainage, and rock art conservation, 61
drawing, in recording of stone as it exists, 

56
Dri Film 104, 42
drilling force measurement system 

(DFMS), 7
drilling resistance measurement system 

(DRMS), 7
drilling resistance profile, in evaluation of 

treatment effectiveness, 50
DRMS (drilling resistance measurement 

system), 7
dust, and rock art damage, 60, 61

EBSPits (England’s Building Stone Pits), 
64

ecological context, new emphasis on, 75
EDS (energy dispersive X-ray 

spectrometry), 29
EDTA (ethylene diamine tetra acetic 

acid), 32, 34
effectiveness of treatments, assessment of, 

49–53
 accelerated weathering studies, 52–53
 criteria for, 49, 50
 databases, efforts to develop, 53
 long-term assessment, 51–53
 natural exposure trials, 52
 need for standardization in, 49
 short-term assessment, 50–51
 standardization of methods, efforts 

toward, 51
 tests designed for untreated stone and, 

50–51

electronic speckle pattern interferometry 
(ESPI), 5–6

emulsions
 as consolidant, 43
 as surface coating, 46
endolithic microbes, 18, 22
energy-dispersive spectroscopy, 7–8
energy dispersive X-ray spectrometry 

(EDS), 29
England’s Building Stone Pits 

(EBSPits), 64
English, as lingua franca of science, 77
English Heritage, 64
environmental concerns
 biocides and, 47
 cleaning and, 30
 consolidants and, 43
 and shrinking of conservator’s tool 

kit, 78
environmental control
 in caves, 23–24
 new emphasis on, 27
 in rock art conservation, 60
Environmental Geology (periodical), 19
environmental scanning electron 

microscopy (ESEM), 17, 29
epoxies, as consolidant, 41–42
epoxysilanes, 46
EPS (extracellular polymeric substances), 

23
ESEM (environmental scanning electron 

microscopy), 17, 29
ESPI (electronic speckle pattern 

interferometry), 5–6
ethanol, 62
ethylene oxide, 48
ethyl-silicate-based treatments, 43
EUROCARE database, 53
European Commission (EC), 34
 anti-graffiti coating project, 45
 BIOBRUSH project, 35, 47
 COMPASS project, 8
 DESALINATION project, 8, 34
 interdisciplinary collaboration, 

encouragement of, 67–70, 76
 QuarryScapes project, 63
 and rock art conservation research, 62
 SALTCONTROL project, 46
 STONECORE project, 37
European Cooperation in Science and 

Technology, 32
European Norm (EN) standards, for 

assessment of treatments, 51
European Science Foundation, 32
evaluation of treatments. See effectiveness 

of treatments, assessment of
extracellular polymeric substances (EPS), 

23

feedback loops, as concept in air 
pollution studies, 75

feldspars, salt contamination and, 19
FIB/ESEM (Focused Ion Beam/

Environmental Scanning Electron 
Microscopy), 79, 79t

fire, and rock art, 61
flood protection, in rock art conservation, 

61, 76
fluorescence LIDAR (light detection and 

ranging), 4
fluorinated acrylic polymers, 45
 evaluative studies on, 52
fluorinated polyurethane, 46
fluoropolymers, as water repellent,  

44–45
Focused Ion Beam/Environmental 

Scanning Electron Microscopy (FIB/
ESEM), 79, 79t

fractal dimension, characterization of 
stone by, 2

freeze-thaw cycle, and rock art, 61
frequency, as concept, in air pollution 

studies, 75
frontal (in situ) polymerization, 43
frost damage
 to rock art, 61
 to stone, 20
Funcosil, 41
funding. See also research funding
 of conference attendance, 71
 as key challenge for future, 80
 for maintenance, inadequacy of, 78
fungus
 biocides for, 48
 in biological cleaning, 33
 control of, 24
 and rock art, 61

Geological Survey of Norway, 63
Gioia marble, barium hydroxide 

consolidation and, 38
global warming. See climate change
glues, organic, in rock art conservation, 

62
Google Scholar, 70
government funding of research, decrease 

in, 76–77
granite, laser cleaning of, 31
ground-penetrating radar, 7
gypsum
 and rock art deterioration, 60
 transformation into calcium 

phosphate, 43
gypsum layer
 latex poultice cleaning and, 32
 removal of, 29–30

halophilic archaea, 24
halophilic bacteria, 19, 24
Hamar Cathedral, Norway, 28
HCT, 43
health and safety concerns
 consolidants and, 43
 and shrinking of conservator’s tool 

kit, 78
heating, differential, and differential 

stress, 25
heritage hydrology, need for research on, 

76
heterotrophic bacteria, 23
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hexafluoropropene-vinylidene fluoride 
elastomer, 43

high-speed neutron tomography 
(synchrotron radiation), 8

H-index, 71. See also citation ranking
historic quarries
 preservation, importance of, 63
 research on, 63–64
HMC (hygroscopic moisture content), 8
holography, in recording of stone as it 

exists, 56
homogeneity, characterization of stone 

by, 2
honeycomb weathering, 18–19
human visitors, and rock art 

conservation, 60, 63, 76
humidity control, in preventive 

conservation, 28–29
hydration damage, 15
hygric swelling
 characterization of stone by, 2
 and differential stress, 24
hygric tests, 8
hygroscopic moisture content (HMC), 8
hygroscopic salts, halophilic microbes 

and, 24

ICOMOS
 Burra Charter and, 54
 Principles for the Conservation of 

Heritage sites in China, 54
 Stone Committee, 2
ICOMOS-ISCS Illustrated Glossary on 

Stone Deterioration Patterns, 3
India, conservation research in, 75, 77
infrared thermography, 7
inherent vice. See intrinsic problems
interdisciplinary research
 increased funding of, 76
 lack of, in current work, 67–70
 strategies for encouraging, 72–73
 in universities, increase in, 76
International Charter for the 

Conservation and Restoration of 
Monuments and Sites (Venice 
Charter), 54

International Institute for Conservation 
(IIC), 74

Internet
 and availability of research, 77–78, 80t
 databases on, and improvements in 

research, 66
 and dissemination of research, 70
 needed improvements in web-based 

tools, 78
intrinsic problems, as cause of decay, 

25–26
ion chromatography, 16
ISI Web of Knowledge (Science Citation 

Index), 70
isocyanates, as consolidant, 43
Italian Commissione NORMAL, 2, 51
ivy, 20–21

journal impact factors, 70–71

kanamycin, as biocide, 48
Kress Foundation, 77
Kumar, 41

Laboratoire de Recherche des 
Monuments Historiques (LRMH), 
65

LACONA (Lasers in the Conservation of 
Artworks), 32

language barriers, and research, 77
Lascaux, caves at, 23–24, 58, 60, 70
laser cleaning, 31–32
 recent developments in, 78
 of rock art, 62
laser holography interferometry, 7
laser interferometry, 5
laser profilometry, 5
laser scanning, in documentation of stone 

artifacts, 5, 56–57, 63
Lasers in the Conservation of Artworks 

(LACONA), 32
laser treatment, as biocide, 48
laser triangulation, 5
latex poultice method (Arte Mundit), 32
latex solutions, recent developments 

in, 78
Lausanne molasse, 25–26
Lecce limestone, 25
lichens, 21, 22
 biocides for, 48
 prevention of, 28
 removal of, 33, 61, 62
 research on effects of, 62
 and rock art, 61
limestone
 acrylic consolidants and, 42
 alkoxysilanes and, 40
 consolidation, recent developments 

in, 78
 dissolution, bacteria and, 23
 and osmotic swelling, 25
 salt removal, 34
 soiling, water repellents and, 52
linear variable differential transformer 

(LVDT), 8
linear velocity displacement transducer. 

See linear variable differential 
transformer

long-term research and testing
 funding for, as key challenge for 

future, 80
 importance of, 78
 lack of resources for, 75, 78
 long-term assessment, 51–53
loss compensation for stone, 65
LRMH (Laboratoire de Recherche des 

Monuments Historiques), 65
LVDT (linear variable differential 

transformer), 8

magnetic resonance imaging (MRI; 
NMR), 4, 8–9, 17–18

magnitude, as concept in air pollution 
studies, 75

maintenance, routine

 current emphasis on, 80
 importance of, 27
 limited funding for, 78
marble
 alkoxysilanes and, 40
 bowing in thin slabs of, 26
Masonry Damage Diagnostic System 

(MDDS), 3
mass balance methods, 13
MDDS (Masonry Damage Diagnostic 

System), 3
media, interest in stone conservation, 77
Mellon Foundation, 73, 77
memory effect, of air pollution, 14
mercury porosimetry, 39
methyl-methacrylate, 42
methylphenyl silicone resin, 48
methyltrimethoxysilane (MTMOS), 40, 

41, 42
microbes
 endolithic, 22
 growth in replacement stones, 65
 patinas and, 33
 to produce sacrificial layer of calcite, 47
 and rock art conservation, 60–61
 surface coatings as food for, 48, 53
microcatchment, 6
microclimate stabilization, in rock art 

conservation, 60
microerosion meter, 5
microflora, 12
microscopy
 AFM (atomic force microscopy), 6, 

17–18
 confocal microscopy, 5
 cryo-scanning electron microscopy 

(cryo-SEM), 79, 79t
 ESEM (environmental scanning 

electron microscopy), 17, 29
 FIB/ESEM (Focused Ion Beam/

Environmental Scanning Electron 
Microscopy), 79, 79t

 optical, 29
 polarized light, 7
 scanning electron, 7, 39
 wet-STEM (wet-scanning transmission 

electron microscopy), 79, 79t
mineral leaching, and rock art, 61
minimally invasive treatments, current 

emphasis on, 80
minimum intervention principle, 27
mirabilite, 15
moisture
 effects of, need for research on, 76
 transport, endolithic microbes and, 22
moisture control
 current emphasis on, 80
 for rock art treatment, 61
molds, in recording of stone as it exists, 

56
monitoring, current emphasis on, 80
MONUFAKT database, 53
Mora poultice method, 32
Mowilith DM 123 S, 62
MRI. See magnetic resonance imaging
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MTMOS (methyltrimethoxysilane), 40, 
41, 42

multidisciplinary research. See 
interdisciplinary research

nano-lime technology, 37, 78
nano particle-modified silanes, 40
NAPAP. See U.S. National Acid 

Precipitation Assessment Program 
(NAPAP) studies

National Center for Preservation 
Technology and Training (NCPTT), 
74, 77

National Science Foundation (USA), 
research funding, 77

NCPTT (National Center for Preservation 
Technology and Training), 74, 77

NGOs, research funding, decrease in, 
76–77

nitric acid, 14
 autotrophic bacteria and, 23
nitrogen oxides
 as cause of decay, 10
 research needed on, 13–14
NMR. See magnetic resonance imaging
nonlinearities, as concept in air pollution 

studies, 75
Norway
 Hamar Cathedral, glass envelope over, 

28
 and preservation of ancient quarries, 63
 rock art preservation efforts, 59, 61, 62
NSF (National Science Foundation), 

research funding, 77

oligomeric alkylpolysiloxane, 45
optical microscopy, 29
optical profilometry, 5
osmotic swelling, 25
oxalate patinas, 22
oxalic acid
 effects of, 22
 lichens and, 22

PAHs (polycyclic aromatic hydrocarbons), 
12

painted stone, laser cleaning of, 31
Paraloid B72, 42
 irreversibility of, 52
Peclet number, 16, 26n6
peer review
 increase in, 76
 need for, 72, 78
perfluoropolyether, 46
photogrammetry, 56
photographs
 in quantification of decay, 4–5
 in recording of stone as it exists, 56
photothermal radiometry, 7
polarized light microscopy, 7
polycyclic aromatic hydrocarbons 

(PAHs), 12
polymerization, frontal (in situ), 43
polymers, as consolidant
 interaction with solvents, 55

 research needed on, 39
polynomial texture mapping (PTM), 4–5
 in recording of stone as it exists, 56
polyureas, as consolidant, 43
polyurethanes, as consolidant, 43
pores. See also voids, surface
 blocking of by consolidants, 55
 size and distribution, characterization 

of, 50
 structural changes in, due to 

consolidation, 39
Portland brownstone, 24, 25
potassium carbonate, 33
potassium sulfate, 33
poultices
 in desalination, 34
 DESALINATION project on, 8, 34
 latex poultice method, 32
 recent developments in, 78
 surface voids and, 34
 urea and glycerol poultice, 33
preventive conservation, 27–29
 current tools, 79t
 importance of, 55
 minimum intervention principle, 27
 new emphasis on, 27
 of rock art, 63
 variety of approaches to, 27
Preventive Conservation of Stone Historical 

Objects (Domaslowski), 27
Principles for the Conservation of Heritage 

sites in China (ICOMOS), 54
profilometry, 5
protective shelters, 28
PTM (polynomial texture mapping), 4–5. 

See also RTI
 in recording of stone as it exists, 56

QuarryScapes (Conservation of Ancient 
Stone Quarry Landscapes in the 
Eastern Mediterranean) project 
(EC), 63

Queen Nefertari wall paintings, 
approaches to conservation of, 76

radar, ground-penetrating, 7
raking light photography, in recording of 

stone as it exists, 56
recording of stone as it exists. See also 

characterization of stone
 current emphasis on, 80
 current tools for, 79t
 in rock art conservation, 60, 63
 in stone conservation, 56–57
Reflectance Transformation Imaging 

(RTI), 4. See also PTM
regulations, and shrinking of 

conservator’s tool kit, 78
Reigate stone, 25–26
replacement stone
 databases on, efforts to establish, 

64–65
 issues in selection of, 64, 65
 preservation of historic quarries 

and, 63

replicas, in recording of stone as it 
exists, 57

research
 importance of practical dissemination, 

70
 language barriers and, 77
 limited interest of scientific community 

in, 77
 previous, limited access to, 78
research, interdisciplinary
 increased funding of, 76
 lack of, in current work, 67–70
 strategies for encouraging, 72–73
 in universities, increase in, 76
research, recent
 increased quality of, 66, 76, 85
 Internet tools, needed improvements in, 

77–78
 in nonwestern nations, 75
 ongoing problems in, 78
 scholarly review articles, increase in, 76
 trends in, 75–77
research, shortcomings of, 66–70
 conference papers, poor quality of, 67, 

72, 78
 dubious general applicability of studies, 

1, 67, 78
 lack of interdisciplinary perspective, 

67–70
 lack of standards of nomenclature or 

testing procedures, 67
 overly-theoretical work, 69, 70
 publications, poor quality of, 66–67
 superficiality, 69
research, suggestions for improving, 

70–74
 conference attendance, financial 

support for, 71
 conference papers, selection of, 71–72
 emphasis on quality over quantity, 

70–71
 interdisciplinary research, 72–73
 peer review, necessity of, 72
 research managers, value of, 71
 scholarly review articles, emphasis on, 

73–74
 training programs for conservation 

scientists, 73
researchers
 current tool kit for, 79, 79t
 networks of, in Europe, 76
 training programs for, 73
research funding
 cutbacks in, 66
 encouragement of interdisciplinary 

collaboration through, 72–73
 for interdisciplinary research, increase 

in, 76
 as key challenge for future, 80
 trends in, 76–77
 in United States, 77
research publications
 increasing number of, 77
 poor quality of research in, 66–67, 78
retreatment
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 research needed on, 55–56
 with surface coatings, 44
Réunion Internationale des Laboratoires 

et Experts des Matériaux, systèmes 
de construction et ouvrages. See 
RILEM

reversibility, principle of
 and cleaning, 29
 consolidants and, 55
 Paraloid B72 and, 52
 vs. practical reality, 55
 surface coatings and, 55
review articles
 benefits of, 73–74
 on biodeterioration, 21
 on decay, causes of, 9
 increase in, 76
Reviews in Conservation (periodical), 

74n5
RILEM (Réunion Internationale des 

Laboratoires et Experts des 
Matériaux, systèmes de 
construction et ouvrages)

 25-PEM Working Group, 49, 51
 59-TPM (Traitement des monuments en 

pierre) Working Group, 51
Risanamento di murature umide e 

degradate (Pinto Guerra), 13
road dust, and rock art damage, 60
road salt, salt damage from, 60
rock art
 definition of, 58
 important sites, 58
rock art conservation, 58–61
 appropriateness of standard stone 

conservation techniques for, 60
 deterioration factors, common, 60–61
 documentation of art as it exists, 60, 63
 growing interest in, 59
 microbes and, 60–61
 need for stability evaluation methods, 

59–60
 research needed in, 59
 traditional practices, 59
 vs. traditional stone conservation, 

59, 60
 treatments, 61–62
 vegetation and, 61
 as young science, 58–59
Rock Art Stability Index, 59–60
root damage, to rock art, 61
RTI (Reflectance Transformation 

Imaging), 4. See also PTM
rubbings or rock art, as documentation, 

63
Russia, conservation research in, 77

St. Trophime (France), 36
SALTCONTROL project (EC), 46
salt damage, 15–19. See also desalination
 accumulation of salts, 16, 24
 crystal growth inhibitors, 18, 46
 factors affecting, 18–19
 hazardous salt level tables, 16
 humidity control and, 28

 indoors, 15
 mechanisms of damage, 17–18
 from mechanisms other than 

crystallization, 19
 recent research advance in, 16–18
 research needed in, 20
 research reviews on, 19–20
 to rock art, 61
 in rock art deterioration, 60
 safe temperature and humidity ranges, 

17
 from salt mixtures, 16–17, 28
 salt type and, 17
 sources of salts, 15
salt levels, measurement of, 8, 16
sand, blowing, mitigation of, 63
sandstones, alkoxysilanes and, 40
San Petronio Cathedral, 42
satellite images, in building degradation 

monitoring, 27
scanning electron microscopy, 7, 39
scholarly review articles. See review 

articles
scialbatura, 22, 46
Science Citation Index (ISI Web of 

Knowledge), 70
scientific community, limited interest in 

preservation research, 77
scientific method, conservation research 

and, 67
Scopus, 70
Scotch tape test, 7, 50
scratch repair, in rock art, 61
self-cleaning surfaces, research on, 43
shelters, protective, in rock art 

conservation, 28, 60
silanes. See alkoxysilanes
silica, colloidal, as surface coating, 47
silicate stones, biofilms and, 21
silicone polymers, need for research 

on, 53
silicones
 evaluative studies of, 52
 as surface coating, 44–45, 46
sodium bicarbonate, 34
sodium chloride
 and differential expansion, 24
 global warming and, 14–15
 and MTMOS, 41
 water repellents and, 45
sodium sulfate
 heptahydrate, 15
 hydration states, 15
 and MTMOS, 41
 testing absorption of, in treated stone, 

50–51
soiling rates
 from air pollution, 13
 water repellents and, 52
soil microbes, consolidation and, 37
sol-gel treatments, 41
solvents, interaction with polymers, 55
South Korea, conservation research in, 

75, 77
sponge test, 7

stains, biological, removal of, 47
standards, lack of, and research quality, 

67
standards committees, recent activity 

by, 77
stereophotography, 56
stone, need to “breathe,” 39
Stone Conservation for the 

Refurbishment of Buildings 
(STONECORE; EC project), 37

stone production technology, evidence of, 
in historic quarries, 63

strength of stone, characterization of 
stone by, 2

streptomycin, as biocide, 48
strontium isotope analysis, 60
sulfation rates, water repellents and, 52
sulfur dioxide (SO2)
 atmospheric, and stone decay, 5
 atmospheric, reduced levels of, 10, 

12, 13
 research needed on, 14
 synergy with nitrogen oxides, 14
sulfuric acid, 14
 autotrophic bacteria and, 23
sulfur oxides, as cause of decay, 10
surface coatings
 anti-graffiti coatings, 45–46, 61
 biocides, 47–48
 biological attacks on, 48
 colloidal silica, 47
 crystal growth inhibitors, 18, 46
 emulsions, 46
 as food for microbes, 48, 53
 lime and biocalcification, 47
 oxalate formation, 46
 responsible use of, 55
 retreatability, 44
 reversibility of, as realistically 

impractical, 55
 types of, 43–44
 water repellents, 44–45
surface cohesion, tests for, 7
surface hardness measurements, 8, 50
surface treatments, and differential 

expansion rates of materials, 24–25
surfactants, 40
SWAPNET (Stone Weathering and 

Atmospheric Pollution Network), 
10

Swiss Expert Centers, 77
Swiss molasse, 25–26
Sydney sandstone, 24
synchrotron radiation high-speed neutron 

tomography, 8
synchrotron X-rays, 17
system dynamics approach, 9, 26n1

tartrates, 43
technical analysis, dubious general 

usefulness of, 1, 67, 78
temperature control, in preventive 

conservation, 28–29
TEOS (tetra-ethoxysilane), 40, 41, 44
terminology
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 of biodeterioration, 21
 for describing decay, 2–3
 standard, lack of, 67
testing, long-term
 funding for, as key challenge for 

future, 80
 importance of, 78
 lack of resources for, 75, 78
 long-term assessment, 51–53
testing procedures, lack of standards 

for, 67
tetra-ethoxysilane (TEOS), 40, 41, 44
texture, characterization of stone by, 2
thenardite, 15
thermal buffering, vegetation and, 20, 61
thermal expansion, differential
 and differential stress, 24
 salt damage from, 19
thermal variation, rapid, 24
thermography, 4, 7
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